Geothermal water and energy management in Poland - the direction for effective use in the Polish Lowlands
DOI:
https://doi.org/10.7494/geol.2025.51.4.427Keywords:
geothermal energy, energetic crisis, ecological crisis, Polish Lowlands, geothermal district heating, PolandAbstract
The article presents the possibility of utilising the available potential of the main geothermal reservoirs in Poland, i.e. the Lower Jurassic and Lower Cretaceous, by using the existing infrastructure in the form of still-operating district heating networks. The suggested solution, therefore integrates the resource side with the infrastructure side. This approach should significantly accelerate the implementation of the proposed solutions, supporting the achievement of the ambitious objectives of Poland’s Energy Policy 2040. Geothermal resources in Poland are characterised by low enthalpy and low temperature. Their temperature is often too low for direct utilisation in systems relying solely on geothermal energy. Existing district heating networks require significantly higher heating medium temperatures during specific periods (when low ambient air temperature is observed). Using existing boilers as peak energy sources while employing geothermal energy as the base load for meeting annual heating demands appears to be an attractive and feasible technical option. Poland, alongside Denmark, Latvia, Finland, Estonia, and Lithuania, is among the countries with the highest density of district heating networks. These networks serve as invaluable infrastructure, reducing the costs associated with geothermal energy extraction. However, this infrastructure is under real threat from the trend towards decentralised energy systems. The liquidation of district heating networks would be irreversible, further exacerbated by the lack of access to clean and alternative energy carriers to replace fossil fuels. It has been demonstrated that, in most analysed cases, the combination of available geothermal resources and district heating infrastructure can successfully contribute to achieving the assumed goals of Poland’s Energy Policy. In the best locations, the share of renewable energy exceeded 80%, with an average of around 50%.
The total reduction of CO2 emissions is estimated as 1.16 million tonnes yearly. The article draws attention to the slow but positive change in the electricity mix, in which the share of RES is growing. This trend is extremely beneficial for popularising heat pumps powered by electricity using geothermal resources as a low-temperature energy carrier.
Downloads
References
REFERENCES 25/4/6
Barbacki A., 2012. Classification of geothermal resources in Poland by exergy analysis-Comparative study. Renewable and Sustainable Energy Reviews, 16(1), 123–128. https://doi.org/10.1016/j.rser.2011.07.141.
Bujakowski W. & Tomaszewska B. (eds.), 2014. Atlas wykorzystania wód termalnych do skojarzonej produkcji energii elektrycznej i cieplnej przy zastosowaniu układów binarnych w Polsce: monografia [Atlas of the possible use of geothermal waters for combined production of electricity and heat using binary systems in Poland: monograph]. Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią, Kraków.
Bujakowski W., Zacharski P., Bielec B., Tyszer M., Pierzchała K., Tomaszewska B., Pająk L., Kępińska B. & Szczepański K., 2023. Verification of the geothermal conditions in the Polish Lowlands based on data from new drilling performed in the years 2000–2022. Mineral Resources Management, 39(1), 193–216. https://doi.org/10.24425/gsm.2023.144636.
Bujakowski W., Zacharski P., Tomaszewska B., Tyszer M., Pierzchała K., Bielec B., Pająk L., Kępińska B. & Szczepański K., 2024. The verification of forecasts of temperature and mineralization of the Lower Jurassic and Lower Cretaceous geothermal waters of the Polish Lowlands based on data from new drillings performed in the years 2000–2023. Mineral Resources Management, 40(2), 181–203. https://doi.org/10.24425/gsm.2024.150828.
CSO (Central Statistical Office), 2022. Energy 2022. https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-2022,1,10.html [access: 10.04.2025].
EC (European Commission), 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal. COM/2019/640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN [access: 10.04.2025].
EC (European Commission), 2022. Photovoltaic Geographical Information System (PVGIS). https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#TMY [access: 10.05.2022].
Energetyka24, 2025. Będzie rewolucja w geotermii? Nowe narzędzie badawcze trafia do Polski. https://energetyka24.com/oze/wiadomosci/bedzie-rewolucja-w-geotermii-nowe-narzedzie-badawcze-trafia-do-polski? [access: 24.04.2025].
Energy Instrat, 2025. CO2 emission allowances price in EU ETS system. https://energy.instrat.pl/en/prices/eu-ets/[access: 23.05.2025].
ERO (Energy Regulatory Office), 2022. Registers and Lists. Concession in areas other than liquid fuels. https://rejestry.ure.gov.pl [access: 6.06.2022].
Eurostat, 2025 Energy consumption in households. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households [access: 10.04.2025].
Ferriani F. & Gazzani A., 2023. The impact of the war in Ukraine on energy prices: Consequences for firms’ financial performance. International Economics, 174, 221–230. https://doi.org/10.1016/j.inteco.2023.04.006.
GeoModel, 2024. Thermophysical parameters of brines. https://geomodel.pl/en/thermophysical-parameters-of-brines/[access: 5.05.2025].
Górecki W., Hajto M., Skrzetelski W. & Szczepański A., 2010. Dolnokredowy oraz dolnojurajski zbiornik wód geotermalnych na Niżu Polskim. Przegląd Geologiczny, 58(7), 589–593.
Górecki W. (ed.), 2006a. Atlas zasobów geotermalnych formacji mezozoicznej na Niżu Polskim [Atlas of geothermal resources of mesozoic formations in the Polish Lowlands]. AGH, Kraków.
Górecki W. (ed.), 2006b. Atlas zasobów geotermalnych formacji paleozoicznej na Niżu Polskim [Atlas of geothermal resources of Paleozoic formations in the Polish Lowlands]. AGH, Kraków.
Hajto M. & Kaczmarczyk M., 2022. The potential to improve air quality by increasing the use of deep geothermal energy. Geology, Geophysics and Environment, 48(2), 147–175. https://doi.org/10.7494/geol.2022.48.2.147.
Hajto M. & Kępińska B., 2025. Geothermal energy use – country update for Poland, 2022–2024 [paper submitted for EGC2025, Zurich, Switzerland].
Hałaj E., 2015. Geothermal bathing and recreation centres in Poland. Environmental Earth Sciences, 74(12), 7497–7509. https://doi.org/10.1007/s12665-014-3740-5.
Huculak M., Jarczewski W. & Dej M., 2015. Economic aspects of the use of deep geothermal heat in district heating in Poland. Renewable and Sustainable Energy Reviews, 49, 29–40. https://doi.org/10.1016/j.rser.2015.04.057.
IEA (International Energy Agency), 2025. Energy mix – Poland. https://www.iea.org/countries/poland/energy-mix [access: 27.03.2025].
Karpinska L. & Śmiech S., 2021. Will energy transition in Poland increase the extent and depth of energy poverty? Journal of Cleaner Production, 328, 129480. https://doi.org/10.1016/j.jclepro.2021.129480.
Kępińska B., 2018. Przegląd stanu wykorzystania energii geotermalnej w Polsce w latach 2016–2018 [A review of geothermal energy uses in Poland in 2016−2018]. Technika Poszukiwań Geologicznych: Geotermia, Zrównoważony rozwój, 57(1), 11–27.
Kępińska B. & Bujakowski W. (eds.), 2011. Wytyczne projektowe poprawy chłonności skał zbiornikowych w związku z zatłaczaniem wód termalnych w polskich zakładach geotermalnych. Wydawnictwo EJB, Czernichów.
KOBiZE (Krajowy Ośrodek Bilansowania i Zarządzania Emisjami), 2021a. [Data received from the National Emissions Database for Greenhouse Gases and Other Substances; unpublished data package; received December 2021].
KOBiZE (Krajowy Ośrodek Bilansowania i Zarządzania Emisjami), 2021b. Wskaźniki emisji zanieczyszczeń ze spalania paliw dla źródeł o nominalnej mocy cieplnej do 5 MW, zastosowane do automatycznego wyliczenia emisji w raporcie do Krajowej bazy za lata 2020 i 2021. https://krajowabaza.kobize.pl/docs/Wskazniki_emisji_zanieczyszczen_spalanie_paliw_dla_zrodel_do_5MW_automatyczne_wyliczenia_emisji_raport_2020_2021.pdf [access: 27.11.2022].
Kurek K.A., Heijman W., van Ophem J. & Gedek S., 2021. The contribution of the geothermal resources to local employment: Case study from Poland. Energy Reports, 7, 1190–1202. https://doi.org/10.1016/j.egyr.2021.01.092.
Kuzemko C., Blondeel M., Dupont C. & Brisbois C.M., 2022. Russia’s war on Ukraine, European energy policy responses & implications for sustainable transformations. Energy Research & Social Science, 93(4), 102842. https://doi.org/10.1016/j.erss.2022.102842.
Lund J.W. & Boyd T.L., 2016. Direct utilization of geothermal energy 2015: Worldwide review. Geothermics, 60, 66–93. https://doi.org/10.1016/j.geothermics.2015.11.004.
Ministry of Climate and Environment, 2021. Polityka Energetyczna Polski do 2040 r. https://www.gov.pl/web/klimat/polityka-energetyczna-polski [access: 10.04.2025].
Nordgård-Hansen E., Fjellså I.F., Medgyes T., Guðmundsdóttir M., Pétursson B., Miecznik M., Pająk L., Halás O., Leknes E. & Midttømme K., 2023. Differences in direct geothermal energy utilization for heating and cooling in central and northern European countries. Energies, 16(18), 6465. https://doi.org/10.3390/en16186465.
Pająk L., Tomaszewska B., Bujakowski W. & Dendys M., 2020. Review of the low-enthalpy Lower Cretaceous geothermal energy resources in Poland as an environmentally friendly source of heat for urban district heating systems. Energies, 13(6), 1302. https://doi.org/10.3390/en13061302.
Pająk L., Pierzchała K., Miecznik M. & Kasztelewicz A., 2023. Wpływ termomodernizacji budynku na obniżenie temperatury zasilania instalacji grzewczej [The effect of thermal retrofitting of a building on the reduction of a heating system supply temperature]. Ciepłownictwo, Ogrzewnictwo, Wentylacja, 54(7–8), 8–12. https://doi.org/10.15199/9.2023.7-8.1.
Rozporządzenie, 2002. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. T.j. Dz.U. 2022 poz. 1225 [Regulation of the Minister of Infrastructure of 12 April 2002 on the technical conditions to be met by buildings and their location. Consolidated text Journal of Laws 2022 item 1225].
Sowiżdżał A., 2018. Geothermal energy resources in Poland – Overview of the current state of knowledge. Renewable and Sustainable Energy Reviews, 82(3), 4020–4027. https://doi.org/10.1016/j.rser.2017.10.070.
Sowiżdżał A., Hajto M. & Górecki W., 2016. The most prospective areas for geothermal utilization for heating and power generation in Poland. [in:] EGC 2016: European Geothermal Congress 2016: Strasbourg, France, 19–24 September 2016, France, 1–7.
Stala-Szlugaj K., 2023. Households in Poland vs. energy carriers: one year after Russia’s February 2022 invasion of Ukraine. Energy Policy Journal, 26(4), 5–18. https://doi.org/10.33223/epj/171879.
Tomaszewska B. & Pająk L., 2012. Dynamics of clogging processes in injection wells used to pump highly mineralized thermal waters into the sandstone structures lying under the Polish Lowlands. Archives of Environmental Protection, 38(3), 103–117.
Tomaszewska B. & Szczepański A., 2014. Possibilities for the efficient utilisation of spent geothermal waters. Environmental Science and Pollution Research, 21(19), 11409–11417. https://doi.org/10.1007/s11356-014-3076-4.
Tyszer M., Tomaszewska B. & Kabay N., 2021. Desalination of geothermal wastewaters by membrane processes: strategies for environmentally friendly use of retentate streams. Desalination, 520, 115330. https://doi.org/10.1016/j.desal.2021.115330.
Zgłobicki W. & Baran-Zgłobicka B., 2024. Air pollution in major Polish cities in the period 2005–2021: Intensity, effects and attempts to reduce it. Environmental Research, 240(2), 117497. https://doi.org/10.1016/j.envres.2023.117497.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)
