Geology, Geophysics and Environment
https://journals.agh.edu.pl/geol
<p style="text-align: justify;"><img style="float: left; margin-right: 15px; margin-bottom: 5px;" src="https://journals.agh.edu.pl/public/site/images/admin/geology-logo1.jpg" alt="gge" width="200" height="301" />Geology, Geophysics and Environment (eISSN: 2353-0790; ISSN: 2299-8004) is an international, peer-reviewed open access journal. There is no charge to authors for the article processing.</p> <p style="text-align: justify;">Geology, Geophysics and Environment publishes original papers, articles and notes from the Earth and Environmental Science field. The journal was previously published under the title of Geologia Kwartalnik AGH (AGH Geology Quarterly). The first issue of the journal was published in 1974. In 2012 the title was changed into Geology, Geophysics and Environment.</p> <p> </p> <p>Web of Science's Journal Citation Reports<br />5-year Impact Factor: 0.9 <br />Impact Factor (2022): 0.8</p>AGH University Pressen-USGeology, Geophysics and Environment2299-8004<p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img style="border-width: 0;" src="http://i.creativecommons.org/l/by/4.0/88x31.png" alt="Licencja Creative Commons" /></a><br /><br /></p> <p>Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.</p> <p>The content of the journal is freely available according to the <a href="https://creativecommons.org/licenses/by/4.0/">Creative Commons License Attribution 4.0 International (CC BY 4.0)</a></p>Front page
https://journals.agh.edu.pl/geol/article/view/6681
Copyright (c) 2024
2024-09-302024-09-30503210210Editorial page
https://journals.agh.edu.pl/geol/article/view/6682
Copyright (c) 2024
2024-09-302024-09-30503211211Table of contents
https://journals.agh.edu.pl/geol/article/view/6683
Copyright (c) 2024
2024-09-302024-09-30503212212Instruction for the authors
https://journals.agh.edu.pl/geol/article/view/6687
Copyright (c) 2024
2024-09-302024-09-30503317317Mapping a fracture network formed by hydraulic fracturing in a shale gas reservoir
https://journals.agh.edu.pl/geol/article/view/5915
<p><span dir="ltr" style="left: 20.25%; top: 49.74%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00954);" role="presentation">Microseismic monitoring is an important technique that can be used to identify fractures in rock mass. </span><span dir="ltr" style="left: 14.29%; top: 51.23%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.041);" role="presentation">The aim of this article is to identify, on the basis of the location of microseismic events, structures formed by </span><span dir="ltr" style="left: 14.29%; top: 52.71%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.04832);" role="presentation">hydraulic fracturing in the Wysin-2H/2Hbis horizontal well from the Baltic Basin in northern Poland, and to </span><span dir="ltr" style="left: 14.29%; top: 54.2%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.04696);" role="presentation">compare the patterns of these structures with the direction of regional stresses. The authors proposed a novel </span><span dir="ltr" style="left: 14.29%; top: 55.68%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00964);" role="presentation">multi-step workflow for finding these structures. To be able to delineate the structures from microseismic events </span><span dir="ltr" style="left: 14.29%; top: 57.17%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02577);" role="presentation">with greater accuracy, a collapsing algorithm was used. Then, based on the Hierarchical Density-Based Spatial </span><span dir="ltr" style="left: 14.29%; top: 58.65%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01781);" role="presentation">Clustering of Applications with Noise (HDBSCAN) clustering algorithm and the elongation coefficient of each </span><span dir="ltr" style="left: 14.29%; top: 60.14%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02176);" role="presentation">cluster, probable fissures were identified and compared against the maximum horizontal stress direction. In ad</span><span dir="ltr" style="left: 14.29%; top: 61.62%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02086);" role="presentation">dition, based on the 3D seismic data from the Wysin and the calculated geomechanical parameters in the moni</span><span dir="ltr" style="left: 14.29%; top: 63.1%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00468);" role="presentation">toring well, the probability classes of brittleness indices in the LMR (λρ-μρ) parameter domain were determined. </span><span dir="ltr" style="left: 14.29%; top: 64.59%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00106);" role="presentation">A comparative analysis was performed between the two variants of microseismic event location (before and after </span><span dir="ltr" style="left: 14.29%; top: 66.07%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02099);" role="presentation">the collapsing procedure) and the estimated probability of a given class of brittleness index. The comparison of </span><span dir="ltr" style="left: 14.29%; top: 67.56%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00693);" role="presentation">the event location with the 3D seismic data was used to validate the results before and after collapsing due to the </span><span dir="ltr" style="left: 14.29%; top: 69.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.997052);" role="presentation">high resolution of the seismic method. It is shown that the collapsed events appeared in more rigid regions, where </span><span dir="ltr" style="left: 14.29%; top: 70.53%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.997685);" role="presentation">more energy release is expected.</span></p>Elżbieta WęglińskaAndrzej LeśniakAndrzej PasternackiPaweł Wandycz
Copyright (c) 2024
2024-06-212024-06-2150321323010.7494/geol.2024.50.3.213Hydrochemical aspects of water exchange through the bottom of headwater stream in suburban zone on the example of the Malina watercourse in Zgierz (Central Poland)
https://journals.agh.edu.pl/geol/article/view/5820
<p><span dir="ltr" style="left: 21.1%; top: 47.16%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02687);" role="presentation">Among the many factors determining the quality of river waters, the influence of the hyporheic zone </span><span dir="ltr" style="left: 14.29%; top: 48.63%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01895);" role="presentation">(HZ) is gaining in importance. Watercourses that exist in the higher parts of catchments are relatively steep and </span><span dir="ltr" style="left: 14.29%; top: 50.09%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.0168);" role="presentation">shallow, and the topography of their valleys activate hyporheic flow. The main goal of this work is to assess the </span><span dir="ltr" style="left: 14.29%; top: 51.55%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01892);" role="presentation">impact of the HZ on the hydrochemical state of the head watercourse of the Malina in the suburbs of the city of </span><span dir="ltr" style="left: 14.29%; top: 53.01%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.03825);" role="presentation">Zgierz with the focus on biogenic compounds. The riverbed of this stream was researched across two distinct </span><span dir="ltr" style="left: 14.29%; top: 54.47%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01991);" role="presentation">stretches: erosive and accumulative, which differ in the conditions for the hyporheic zone’s interaction with the </span><span dir="ltr" style="left: 14.29%; top: 55.93%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02724);" role="presentation">riverbed. The nutrients are delivered to the stream mainly in the erosive stretch and are related to the inflow of </span><span dir="ltr" style="left: 14.29%; top: 57.39%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.05374);" role="presentation">nutrient-rich groundwater from the urbanised catchment. The pollutants transported down by the stream are </span><span dir="ltr" style="left: 14.29%; top: 58.85%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01376);" role="presentation">then delivered to the HZ in the accumulative stretch, where nitrates are denitrified and phosphates are deposited </span><span dir="ltr" style="left: 14.29%; top: 60.31%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00844);" role="presentation">with the suspension. Ammonium nitrogen, in turn, is introduced into the stream from the HZ as a result of either </span><span dir="ltr" style="left: 14.29%; top: 61.77%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.03991);" role="presentation">the process of ammonification of organic matter deposited in sediments or inflow with polluted groundwater. </span><span dir="ltr" style="left: 14.29%; top: 63.24%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01282);" role="presentation">The results indicate that the winter season is the most important period in shaping the interaction of river waters </span><span dir="ltr" style="left: 14.29%; top: 64.7%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.03605);" role="presentation">with the underlying hyporheic zone, in which the causal side of the relationship should be associated with the </span><span dir="ltr" style="left: 14.29%; top: 66.16%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01441);" role="presentation">subchannel environment, and the effects are recorded in the river waters.</span></p>Maciej ZiułkiewiczRafał Grulke
Copyright (c) 2024
2024-09-022024-09-0250323125110.7494/geol.2024.50.3.231Complex and spatial analysis of geophysical data recorded in the areas of karst forms developed in horst structures
https://journals.agh.edu.pl/geol/article/view/6326
<p><span dir="ltr" style="left: 21.01%; top: 43.78%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00118);" role="presentation">The paper presents the results of geophysical surveys carried out over two voids occurring in limestone </span><span dir="ltr" style="left: 14.29%; top: 45.2%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00519);" role="presentation">in the area of the Zakrzówek horst in Krakow, Poland. The first void was an anthropogenic cavern in the Kostrze </span><span dir="ltr" style="left: 14.29%; top: 46.63%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.992419);" role="presentation">site (a district of Krakow), while the second one was the Jasna cave (located in a reserve named “The Twardowski </span><span dir="ltr" style="left: 14.29%; top: 48.06%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01284);" role="presentation">Rocks”). The main terrain surveys were carried out using GPR (ground penetrating radar). To reduce interpreta</span><span dir="ltr" style="left: 14.29%; top: 49.48%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01072);" role="presentation">tive ambiguity, the GPR results were correlated with additional results obtained from two other methods, i.e. the </span><span dir="ltr" style="left: 14.29%; top: 50.91%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00634);" role="presentation">GCM (ground conductivity meter) and ERT (electrical resistivity tomography). The main aim of the geophysical </span><span dir="ltr" style="left: 14.29%; top: 52.33%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.999978);" role="presentation">surveys was the detection and 3D visualisation of karst forms developed around both voids located in horst struc</span><span dir="ltr" style="left: 14.29%; top: 53.76%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02517);" role="presentation">tures in limestone. The particular purpose of the research was to try to clarify the geological nature of the GPRn</span><span dir="ltr" style="left: 14.29%; top: 55.18%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.04544);" role="presentation">anomalies characterised by an almost complete lack of reflections; both ohmic and scattering attenuations of </span><span dir="ltr" style="left: 14.29%; top: 56.61%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.012);" role="presentation">GPR signals were analysed to solve the reduction of the reflection amplitudes. Another important fact discussed </span><span dir="ltr" style="left: 14.29%; top: 58.03%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01603);" role="presentation">in the paper was the low consistency and similarity of the results obtained from geophysical surveys carried out </span><span dir="ltr" style="left: 14.29%; top: 59.46%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02202);" role="presentation">above the Jasna cave. The interpretation of the GPR and GCM data recorded over the anthropogenic cavern al</span><span dir="ltr" style="left: 14.29%; top: 60.88%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00051);" role="presentation">lowed the places of strong weathering/fracturing of limestone to be indicated as well as a zone of limestone filled </span><span dir="ltr" style="left: 14.29%; top: 62.31%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02282);" role="presentation">with clay-rich material. The interpretation of the GPR and ERT data recorded over the cave made it possible to </span><span dir="ltr" style="left: 14.29%; top: 63.73%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.0163);" role="presentation">identify areas of the strong weathering/fracturing of limestone, faults, anastomoses and karst chimneys.</span></p>Tomisław GołębiowskiMichał ĆwiklikDominika Guzior
Copyright (c) 2024
2024-09-302024-09-3050325327410.7494/geol.2024.50.3.253Geothermal energy potential of Main Dolomite formation in SW Poland
https://journals.agh.edu.pl/geol/article/view/6317
<p><span dir="ltr" style="left: 21.12%; top: 42.21%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02655);" role="presentation">This paper evaluates the geothermal potential of the Main Dolomite formation in an oil and gas field </span><span dir="ltr" style="left: 14.29%; top: 43.64%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01405);" role="presentation">on the Fore-Sudetic Monocline (SW, Poland). The reservoir characterization included a well-logging interpreta</span><span dir="ltr" style="left: 14.29%; top: 45.06%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.04285);" role="presentation">tion and developed 3D petrophysical and temperature models that provided information on storage potential, </span><span dir="ltr" style="left: 14.29%; top: 46.49%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.04078);" role="presentation">transport properties, and temperature conditions in the analyzed carbonate formation. Geothermal energy po</span><span dir="ltr" style="left: 14.29%; top: 47.91%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00111);" role="presentation">tential was assessed using heat in place (HIP) and recoverable heat (Hrec) parameters for water and CO</span><sub><span dir="ltr" style="left: 83.95%; top: 48.58%; font-family: serif;" role="presentation">2</span> </sub><span dir="ltr" style="left: 84.78%; top: 47.91%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.993178);" role="presentation">systems, </span><span dir="ltr" style="left: 14.29%; top: 49.34%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02356);" role="presentation">considering a 50-year plant lifespan. Petrophysical and temperature data classify reservoirs using unsupervised </span><span dir="ltr" style="left: 14.29%; top: 50.76%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02518);" role="presentation">machine learning, identifying zones with high and low geothermal potential, noting a strong limestone and do</span><span dir="ltr" style="left: 14.29%; top: 52.19%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00708);" role="presentation">lomite dichotomy. Dolomite horizon shows more promising reservoir quality with mean porosity and permeabil</span><span dir="ltr" style="left: 14.29%; top: 53.61%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00869);" role="presentation">ity of 0.045 and 0.4 mD, respectively, however, its mean thickness reaches 11.58 m at maximum. The calculated </span><span dir="ltr" style="left: 14.29%; top: 55.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02394);" role="presentation">Hrec for a 50-year lifetime of a geothermal system varies across dolomite horizon. In the most promising areas </span><span dir="ltr" style="left: 14.29%; top: 56.46%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.978853);" role="presentation">of NNW, WSW, and E parts, the values of Hrec are 8.19, 3.47, and 1.34 MW for water, respectively, and 0.69, 0.29, </span><span dir="ltr" style="left: 14.29%; top: 57.89%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.990405);" role="presentation">and 0.11 MW for CO</span><sub><span dir="ltr" style="left: 28.5%; top: 58.56%; font-family: serif;" role="presentation">2</span> </sub><span dir="ltr" style="left: 29.35%; top: 57.89%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.997279);" role="presentation">as working fluids. Remarkably, the energy locked in the NNW zone constitutes nearly 21% </span><span dir="ltr" style="left: 14.29%; top: 59.32%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.03597);" role="presentation">of the total geothermal energy potential within the entire dolomite horizons of the study area. The geothermal </span><span dir="ltr" style="left: 14.29%; top: 60.74%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.0298);" role="presentation">resources for the most perspective location within the dolomite horizon were estimated at 12.99 and 1.09 MW </span><span dir="ltr" style="left: 14.29%; top: 62.17%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.994261);" role="presentation">levels, using water and CO</span><sub><span dir="ltr" style="left: 32.32%; top: 62.83%; font-family: serif;" role="presentation">2</span></sub> <span dir="ltr" style="left: 33.17%; top: 62.17%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.991901);" role="presentation">as working fluids, respectively, assuming 50 years of the project’s lifetime.</span></p>Małgorzata Słota-ValimAnita Lis-ŚledzionaTomasz Topór
Copyright (c) 2024
2024-09-302024-09-3050327529310.7494/geol.2024.50.3.275The usability of the Nash cascade-submerged cascade rainfall-runoff model with regard to other conceptual models
https://journals.agh.edu.pl/geol/article/view/5773
<p><span dir="ltr" style="left: 21.1%; top: 41.1%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01954);" role="presentation">Conceptual hydrological models are an effective tool used to forecast runoff from catchments and as</span><span dir="ltr" style="left: 14.29%; top: 42.52%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00263);" role="presentation">sess changes in catchment dynamics. The article presents a modified concept of the Diskin parallel cascade mod</span><span dir="ltr" style="left: 14.29%; top: 43.95%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.996541);" role="presentation">el, with the replacement of one of the cascades with the submerged cascade model – the Nash cascade-submerged </span><span dir="ltr" style="left: 14.29%; top: 45.37%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.0269);" role="presentation">cascade model (NCSC2). Considering a watershed as a system where total runoff is determined by amounts of </span><span dir="ltr" style="left: 14.29%; top: 46.8%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.03825);" role="presentation">both surface and subsurface runoffs, the use of different model structures as surface and subsurface runoffs is </span><span dir="ltr" style="left: 14.29%; top: 48.23%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00174);" role="presentation">reasonable. Adopting 13 different objective functions, the comparative analysis of NCSC2, Nash cascade, Diskin </span><span dir="ltr" style="left: 14.29%; top: 49.65%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02059);" role="presentation">model, single linear reservoir and submerged reservoir cascade (SC2) models has been carried out in the catch</span><span dir="ltr" style="left: 14.29%; top: 51.08%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.981626);" role="presentation">ment of six Polish rivers. The research has shown that the use of the submerged cascade as one of the Diskin model </span><span dir="ltr" style="left: 14.29%; top: 52.5%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.995141);" role="presentation">cascades positively affects the quality of the model.</span></p>Norbert LaskowskiJacek Kurnatowski
Copyright (c) 2024
2024-09-262024-09-2650329530610.7494/geol.2024.50.3.295Radiological analysis of food products of forest origin in the pollution zone of the Kamin-Kashyrskyi district of the Volyn region of Ukraine
https://journals.agh.edu.pl/geol/article/view/6134
<p><span dir="ltr" style="left: 21.18%; top: 48.34%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.04255);" role="presentation">The problem of the radiological contamination of food products from secondary forest use remains </span><span dir="ltr" style="left: 14.28%; top: 49.77%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.04274);" role="presentation">relevant and requires targeted preventive measures, with the contamination being the result of the Chornobyl </span><span dir="ltr" style="left: 14.28%; top: 51.19%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01694);" role="presentation">nuclear power plant disaster. The research was conducted with the aim of comprehensively monitoring the con</span><span dir="ltr" style="left: 14.28%; top: 52.62%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02203);" role="presentation">tent of radionuclide</span> <sup><span dir="ltr" style="left: 28.17%; top: 52.51%; font-family: serif; transform: scaleX(0.960121);" role="presentation">137</span></sup><span dir="ltr" style="left: 29.57%; top: 52.62%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02263);" role="presentation">Cs in forest products (Wild Bilberry (</span><em><span dir="ltr" style="left: 55.29%; top: 52.62%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00501);" role="presentation">Vaccinium myrtillus</span></em><span dir="ltr" style="left: 68.95%; top: 52.62%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.996182);" role="presentation">), Blackberries (</span><span dir="ltr" style="left: 79.73%; top: 52.62%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.987363);" role="presentation">Rubus</span> <span dir="ltr" style="left: 84.41%; top: 52.62%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.988721);" role="presentation">L.), Wild </span><span dir="ltr" style="left: 14.29%; top: 54.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01462);" role="presentation">Strawberries (</span><em><span dir="ltr" style="left: 23.85%; top: 54.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00038);" role="presentation">Fragaria vesca</span></em> <span dir="ltr" style="left: 34.07%; top: 54.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.00164);" role="presentation">L.), Raspberry (</span><em><span dir="ltr" style="left: 44.78%; top: 54.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.0097);" role="presentation">Rubus idaeus</span></em> <span dir="ltr" style="left: 54.34%; top: 54.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01139);" role="presentation">L.), together with</span> <em><span dir="ltr" style="left: 66.69%; top: 54.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02122);" role="presentation">Cantharellus cibarius</span></em><span dir="ltr" style="left: 81.23%; top: 54.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif;" role="presentation">,</span> <em><span dir="ltr" style="left: 82.07%; top: 54.04%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.984378);" role="presentation">Boletus edu</span><span dir="ltr" style="left: 14.29%; top: 55.47%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.933687);" role="presentation">lis</span></em><span dir="ltr" style="left: 15.78%; top: 55.47%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.03796);" role="presentation">, and</span> <em><span dir="ltr" style="left: 19.6%; top: 55.47%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(0.990558);" role="presentation">Leccinum scabrum</span> </em><span dir="ltr" style="left: 32.73%; top: 55.47%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.023);" role="presentation">mushrooms) of the zone of radioactive contamination of the Kamin-Kashyrskyi dis</span><span dir="ltr" style="left: 14.29%; top: 56.89%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01214);" role="presentation">trict of the Volyn region. Samples were collected in 2020–2022. The total number of samples was 729 dried and </span><span dir="ltr" style="left: 14.29%; top: 58.32%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02419);" role="presentation">975 fresh mushrooms and berries samples for 2020, 1,154 dried and 886 fresh samples for 2021, and 870 dried </span><span dir="ltr" style="left: 14.29%; top: 59.74%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01623);" role="presentation">and 896 fresh samples for 2022. The results of research indicate that in the specified territory, and at the present </span><span dir="ltr" style="left: 14.29%; top: 61.17%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02223);" role="presentation">moment, forest products are to be found with a significant content of the radionuclide</span> <sup><span dir="ltr" style="left: 73.42%; top: 61.06%; font-family: serif; transform: scaleX(0.960121);" role="presentation">137</span></sup><span dir="ltr" style="left: 74.82%; top: 61.17%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01087);" role="presentation">Cs, including those ex</span><span dir="ltr" style="left: 14.29%; top: 62.59%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.03613);" role="presentation">ceeding the permissible levels. There is, therefore, a threat of further internal exposure of the local population </span><span dir="ltr" style="left: 14.29%; top: 64.02%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.02604);" role="presentation">via access to procurement points of contaminated products and restaurants. In connection with the detection of </span><span dir="ltr" style="left: 14.29%; top: 65.44%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01937);" role="presentation">these pollutants in forest products in the studied area, further expansion of specialized radioecological monitor</span><span dir="ltr" style="left: 14.29%; top: 66.87%; font-size: calc(var(--scale-factor)*10.00px); font-family: serif; transform: scaleX(1.01756);" role="presentation">ing studies and strengthening of radiological control remains relevant.</span></p>Oksana HromykLeonid IlyinMykola ZinchukIgor GrygusSerhii KorotunWalery Zukow
Copyright (c) 2024
2024-09-302024-09-3050330731610.7494/geol.2024.50.3.307