Numerical modeling of a potential CO2-supplied enhanced geothermal system (CO2-EGS) in the Åsgard field, Norway

Authors

DOI:

https://doi.org/10.7494/geol.2024.50.2.175

Keywords:

EGS (Enhanced Geothermal System), CO2-EGS, CO2 storage, numerical modeling, TOUGH3, Åre Formation, Åsgard field

Abstract

The principle of Enhanced Geothermal System (EGS) technology is that water injected at a sufficiently high pressure will lead to the fracturing of naturally impermeable rocks, and as a result, this will create hydraulic communication between wells. In this way, reservoirs not previously considered to be perspective can provide geothermal heat to the surface. Since nearly two decades, CO2 is considered, mostly theoretically, as a working fluid that can potentially provide higher net power output than water in EGS’s installation. In this respect, the possibility of accessing high-temperature heat from the Åre and Tilje formations located on the shelf of the Norwegian Sea was analysed. The estimated temperature at the reservoir depth of 4,500–5,000 m is not less than 165°C. For this, a 3D numerical modelling was performed in order to analyse 10 different scenarios for heat extraction using supercritical CO2 (sCO2) as a working fluid. Results indicate that appropriate matching of the mass flow and temperature of the injected CO2 allows to avoid premature temperature decline in the reservoir. However, as Åre and Tilje formations are built from highly porous and relatively highly permeable rocks, the fluid entering the production well will always be a mixture of CO2 and water. This is advantageous from the point of view that a significant part of the injected CO2 is trapped in the reservoir, while the higher water content in the production well allows a significant temperature drop during fluid extraction to the surface to be avoided.

Downloads

Download data is not yet available.

References

Brown D., 2000. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. [in:] Twenty-fifth workshop on geothermal reservoir engineering: Proceedings: Stanford University, 24–26 January 2000, Stanford Geothermal Program, 233–238.

Climate Action Tracker, Norway, update 1 December 2022. https://climateactiontracker.org/countries/norway/ [access: 12.04.2024].

Crippa M., Guizzardi D., Pagani F., Banja M., Muntean M., Schaaf E., Becker W.E., Monforti-Ferrario F., Quadrelli R., Risquez Martin A., Taghavi-Moharamli P., Köykkä J., Grassi G., Rossi S., Melo J., Oom D., Branco A., San-Miguel J. & Vignati E., 2023. GHG emissions of all world countries – 2023. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/953322.

Croucher A., 2022. PyTOUGH user’s guide. Version 1.5.6. Department of Engineering Science, University of Auckland, Auckland.

Esteves A.F., Santos F.M. & Pires J.C.M., 2019. Carbon dioxide as geothermal working fluid: An overview. Renewable and Sustainable Energy Reviews, 114, 109331, https://doi.org/10.1016/j.rser.2019.109331.

Furre A.-K., Eiken O., Alnes H., Vevatne J.N. & Kiær A.F., 2017. 20 years of monitoring CO2-injection at Sleipner. Energy Procedia, 114, 3916–3926. https://doi.org/10.1016/j.egypro.2017.03.1523.

Halland E.K., Johansen W.T. & Riis F. eds., 2012. CO2 storage atlas: Norwegian Sea. Norwegian Petroleum Directorate, Stavanger. https://www.sodir.no/en/whats-new/publications/co2-atlases/co2-storage-atlas-of-the-norwegian-sea/.

Jung Y., Shu Heng Pau G., Finsterle S. & Doughty C., 2018. TOUGH3 User’s Guide, Version 1.0. Energy Geosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley.

Koch J.O. & Heum O.R., 1995. Exploration trends of the Halten Terrace. Norwegian Petroleum Society Special Publications, 4, 235–251. https://doi.org/10.1016/S0928-8937(06)80044-5.

Kvalsvik K.H., Midttømme K. & Ramstad R.K., 2019. Geothermal Energy Use, Country Update for Norway. [in:] European Geothermal Congress 2019: The Hague, 11–14 June 2019: Proceedings, EGEC, Brussels. https://europeangeothermalcongress.eu/wp-content/uploads/2019/07/CUR-20-Norway.pdf.

Midttømme K., Alonso M.J., Krafft C.G., Kvalsvik K.H., Ramstad R.K. & Stene J., 2021. Geothermal Energy Use in Norway, Country Update for 2015–2019. [in:] World Geothermal Congress 2020+1Reykjavik, Iceland, April 26 – May 2 2020: Proceedings. https://www.researchgate.net/publication/340984519_Geothermal_Energy_Use_in_Norway_Country_Update_for_2015-2019.

NOD, 2023a. Open data. Norwegian Offshore Directorate. https://www.sodir.no/en/about-us/open-data/ [access: 12.03.2024].

NOD, 2023b. FactPages. Norwegian Offshore Directorate. https://factpages.sodir.no/ [access: 14.03.2024].

Nordgård-Hansen E., Fjellså I.F., Medgyes T., Guðmundsdóttir M., Pétursson B., Miecznik M., Pająk L., Halás O., Leknes E. & Midttømme K., 2023. Differences in direct geothermal energy utilization for heating and cooling in central and northern European countries. Energies, 16(18), 6465. https://doi.org/10.3390/en16186465.

Pająk L., Sowiżdżał A., Gładysz P., Tomaszewska B., Miecznik M., Andresen T., Frengstad B.S. & Chmielowska A., 2021. Multi-criteria studies and assessment supporting the selection of locations and technologies used in CO2-EGS Systems. Energies, 14(22), 7683. https://doi.org/10.3390/en14227683.

Pan L., Spycher N., Doughty C. & Pruess K., 2015. ECO2N V2.0: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley.

Pruess K., 2006. Enhanced geothermal systems (EGS) using CO2 as working fluid – a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 35(4), 351–367. https://doi.org/10.1016/j.geothermics.2006.08.002.

Pruess K., 2008. On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Conversion & Management, 49(6), 1446–1454. https://doi.org/10.1016/j.enconman.2007.12.029.

Riis F. & Halland E., 2014. CO2 storage atlas of the Norwegian Continental shelf: Methods used to evaluate capacity and maturity of the CO2 storage potential. Energy Procedia, 63, 5258–5265. https://doi.org/10.1016/j.egypro.2014.11.557.

Sadeghi H., Ijaz A. & Singh R.M., 2022. Current status of heat pumps in Norway and analysis of their performance and payback time. Sustainable Energy Technologies and Assessments, 54, 102829. https://doi.org/10.1016/j.seta.2022.102829.

Skjæveland S. & Kleppe J., 1992. Recent Advances in Improved Oil Recovery Methods for North Sea Sandstone Reservoirs. SPOR Monograph, Norwegian Petroleum Directorate, Stavanger. https://doi.org/10.13140/RG.2.1.1653.1920.

Slagstad T., Balling N., Elvebakk H., Midttømme K., Olesen O., Olsen L. & Pascal Ch., 2009. Heat-flow measurements in Late Palaeoproterozoic to Permian geological provinces in south and central Norway and a new heat-flow map of Fennoscandia and the Norwegian–Greenland Sea. Tectonophysics, 473(3–4), 341–361. https://doi.org/10.1016/j.tecto.2009.03.007.

Sowiżdżał A., Gładysz P., Andresen T., Miecznik M., Frengstad B.S., Liszka M., Chmielowska A., Gawron M., Løvseth S.W., Pająk L., Stenvik L. & Tomaszewska B., 2021. CO2-enhanced geothermal systems for climate neutral energy supply. [in:] Røkke N.A. & Knuutila H.K. (eds.), TCCS-11: The 11th International Trondheim CO2 Capture, Transport and Storage Conference: Trondheim 22nd–23rd June 2021, SINTEF Academic Press, Oslo, 277–283. https://www.sintef.no/globalassets/project/tccs-11/tccs-11/sproceedings-no-7.pdf.

Sowiżdżał A., Starczewska M. & Papiernik B., 2022. Future technology mix – enhanced geothermal system (EGS) and carbon capture, utilization, and storage (CCUS) – An overview of selected projects as an example for future investments in Poland. Energies, 15(10), 3505. https://doi.org/10.3390/en15103505.

Stenvik L.A. & Frengstad B.S., 2021. Geological conditions for enhanced geothermal systems with CO2 as heat transmission fluid in Norway. NTNU, Trondheim, Norway [unpublished report, EnerGizeS project].

Downloads

Published

2024-06-20

How to Cite

Miecznik, M., Tyszer, M., Sowiżdżał, A., Andresen, T., Frengstad, B. S., Stenvik, L. A., Pierzchała, K., & Gładysz, P. (2024). Numerical modeling of a potential CO2-supplied enhanced geothermal system (CO2-EGS) in the Åsgard field, Norway. Geology, Geophysics and Environment, 50(2), 175–190. https://doi.org/10.7494/geol.2024.50.2.175

Issue

Section

Articles