Geological and environmental implications of the utilisation of geothermal energy in the Lahendong working area, Indonesia

Authors

DOI:

https://doi.org/10.7494/geol.2022.48.1.69

Keywords:

geothermal system, geothermal direct utilisation, geothermal desalination, environmental impact

Abstract

This study presents the characteristics of the Lahendong geothermal working area (GWA) in terms of the geological, geophysical, geochemical, and environmental implications. The investigated area is located in the Sulawesi North Arm, where the volcanic arc extends from Sangihe Island to Minahasa with two major strike-slip faults. NE–SW (northeast-southwest) trending faults control the thermal surface manifestation. The geothermal field is grouped into two hydrochemical systems: acid-sulphate-chloride (acid reservoir) and chloride (closer to neutral) types. The environmental implication analysis shows that the North Sulawesi province is experiencing water shortages due to excessive mining activities, inadequate wastewater management, and periods of drought. Although geothermal wastewater is being re-injected, the possibility of water contamination by hazardous materials from geothermal power plant activity is still evident. This study reviews the actual geothermal utilisation in the form of the 120 MWe power plant, the 500 kWe binary power plant, while the heat from geothermal energy is used for palm sugar production. Furthermore, the article also analyses the potential of the rational use of geothermal resources in this area. As a result of the high salinity and silica concentration of the brine, the geothermal wastewater should be treated before further utilisation and it potentially benefits both local communities and geothermal companies.

Downloads

Download data is not yet available.

References

An Q., Wang Y., Zhao J., Luo C. & Wang Y., 2016. Direct utilization status and power generation potential of low-medium temperature hydrothermal geothermal resources in Tianjin, China: A review. Geothermics, 64, 426–438. https://doi.org/10.1016/j.geothermics.2016.06.005.

Badan Pusat Statistik, 2019. Statistik Air Bersih: Water Supply Statistics 2013–2018. https://www.bps.go.id/publication/2019/12/24/e3be82175162b2dd1fe7b925/statistikair-bersih-2013--2018.html [access: 25.04.2020].

Brehme M., 2015. The role of fault zones on structure, operation and prospects of geothermal reservoirs. A case study in Lahendong, Indonesia. Thesis Dissertation at Georg-August University, Göttingen. https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0022-5FF9-A [access: 23.03.2020].

Brehme M., Moeck I., Kamah Y., Zimmermann G. & Sauter M., 2014. A hydrotectonic model of a geothermal reservoir-A study in Lahendong, Indonesia. Geothermics, 51, 228–239. https://doi.org/10.1016/j.geothermics.2014.01.010.

Brehme M., Blöcher G., Cacace M., Kamah Y., Sauter M. & Zimmermann G., 2016a. Permeability distribution in the Lahendong geothermal field: A blind fault captured by thermal–hydraulic simulation. Environmental Earth Sciences, 75, 2015–2017. https://doi.org/10.1007/s12665-016-5878-9.

Brehme M., Deon F., Haase C., Wiegand B., Kamah Y., Sauter M. & Regenspurg S., 2016b. Fault controlled geochemical properties in Lahendong geothermal reservoir Indonesia. Grundwasser, 21, 29–41. https://doi.org/10.1007/s00767-015-0313-9.

Frick S., Saadat A., Surana T., Siahaan E.E., Kupfermann G.A., Erbas K., Huenges E. & Gani M.A., 2015. Geothermal Binary Power Plant for Lahendong, Indonesia: A German-Indonesian Collaboration Project. [in:] Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015, 06027, 1–5.

Frick S., Kranz S., Kupfermann G., Saadat A. & Huenges E., 2019. Making use of geothermal brine in Indonesia: binary demonstration power plant Lahendong/Pangolombian. Geothermal Energy, 7, 30. https://doi.org/10.1186/s40517-019-0147-2.

Ganda S. & Sunaryo D., 1982. Preliminary study of the Geology of Minahasa Area, North Sulawesi. Pertamina Internal Report [in Indonesian].

Gude V.G., 2016. Geothermal source potential for water desalination- Current status and future perspective. Renewable & Sustainable Energy Reviews, 57, 1038–1065. https://doi.org/10.1016/j.rser.2015.12.186.

Hariyadi S., Polii B. & Yanuwiadi B., 2012. Feasibility Analysis of Geothermal Power Plant Wastewater Utilization: A Case Study on Lahendong Geothermal Power Plant, North Sulawesi. International Journal of Basic and Applied Sciences, 12, 187–190.

Herschy R.W., 2012. Water Quality for Drinking: WHO Guidelines. [in:] Bengtsson L., Herschy R.W., Fairbridge R.W. (eds.), Encyclopedia of Lakes and Reservoirs, Encyclopedia of Earth Sciences Series, Springer, Dordrecht, 876–883. https://doi.org/10.1007/978-1-4020-4410-6_184.

Hochstein M.P. & Sudarman, S., 2008. History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics, 37, 220–266. https://doi.org/10.1016/j.geothermics.2008.01.001.

Huttrer G.W., 2020. Geothermal Power Generation in the World 2015–2020 Update Report. [in:] Proceedings World Geothermal Congress 2020+1, Reykjavik, Iceland, April – October 2021, 1017, 1–17.

IRENA, 2017. Geothermal Power: Technology Brie. International Renewable Energy Agency, Abu Dhabi. www.irena.org/publications/2017/Aug/Geothermal-power-Technology-brief [access: 3.04.2020].

Koestono H., Siahaan E.E., Silaban M. & Franzson H., 2010. Geothermal Model of the Lahendong Geothermal Field, Indonesia. [in:] Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-29 April 2010, 1259, 1–6.

Kumolosari E., Jalaali B., Suryopratomo K. & Dinaryanto O., 2020. The Alternative Binary Geothermal Power-Plant Design to Utilize the Waste Heat in Lahendong Plant. ANGKASA: Jurnal Ilmiah Bidang Teknologi, 12, 99–106. https://doi.org/10.28989/angkasa.v12i2.726.

Lund J.W & Toth A.N., 2020. Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 90, 101915. https://doi.org/10.1016/j.geothermics.2020.101915.

Menteri Kesehatan Republik Indonesia, 2017. Peraturan Menteri Kesehatan tentang Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan Kesehatan Air Untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua, dan Pemandian Umum. Peratur, Menteri Kesehat, Republik Indonesia. https://peraturan.bpk.go.id/Home/Details/112092/permenkes-no-32-tahun-2017 [access: 11.08.2020].

Ministry of National Development Planning of Republic Indonesia, 2015. Roadmap of SDGs Indonesia: A Highlight. Ministry of National Development Planning/ National Development Planning Agency. https://inff.org/resource/roadmap-of-sdgs-indonesia-a-highlight [access: 17.03.2020].

Ministry of National Development Planning of Republic Indonesia, 2017. Regulation of the Minister of National Development Planning No. 2 of 2017 about the Strategic Plan 2015–2019. www.policy.asiapacificenergy.org/node/3031 [access: 19.07.2020].

Ministry of Mineral and Energy Resources, 2015. Unlocking Indonesia’s Geothermal Potential. https://drive.esdm.go.id/wl/?id=z0gQem1FwdkHVuXjtR6IAOCBJRDFSQwF&-mode=list&download=1 [access: 10.01.2019].

Murakami T. & Takamiya A., 2017. Units 5 and 6 at Lahendong Geothermal Power Plant and Units 3 and 4 at Ulubelu Geothermal Power Plant in Indonesia. Fuji Electric Review, 63, 12–18. https://www.fujielectric.com/company/tech/pdf/63-01/FER63-01-012-2017.pdf [access: 9.05.2020].

Nian Y.L. & Cheng W.L., 2018. Insights into geothermal utilization of abandoned oil and gas wells. Renewable & Sustainable Energy Reviews, 87, 44–60. https://doi.org/10.1016/j.rser.2018.02.004.

Nugroho A.J., 2007. Evaluation of Waste Brine Utilization From Lhd Unit III for Electricity Generation in Lahendong Geothermal Field, Indonesia. United Nations University Geothermal Training Programme, Reports 2007, Number 17, Reykjavik. https://orkustofnun.is/gogn/unugtp-report/UNU-GTP-2007-17.pdf [access: 27.05.2020].

Pambudi N.A., 2017. Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renewable & Sustainable Energy Reviews, 81, 2893–2901. https://doi.org/10.1016/j.rser.2017.06.096.

Piesse M., 2016. Indonesian Water Security: Improving but Still Subject to Shocks. Future Direction International, 8 March 2016, InfoRD. http://inford.org/indonesian-water-security-improving-but-still-subject-to-shocks/ [access: 27.05.2020].

Radja V.T. & Sulasdi D., 1995. Environmental effects of geothermal power plant in Indonesia. [in:] Proceedings of the World Geothermal Congress, 1995: Florence, Italy, 18–31 May 1995, Vol. 4, International Geothermal Association, 2735–2739.

Raharjo I.B., Maris V., Wannamaker P.E., Chapman D.S., Bldg F.A.S. & Rm S.E., 2010. Resistivity Structures of Lahendong and Kamojang Geothermal Systems Revealed from 3-D Magnetotelluric Inversions, A Comparative Study. [in:] Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010, 1371, 1–6.

Roeroe H.J., Tuerah N., Surana T., Suyanto, Maramis J., Pangerego F., Kolibu H.S. & Malingkas T.D., 2013. Direct use of geothermal energy for drying agricultural and making palm sugar crystal. [in:] Proceedings Thirty-Eight Workshop on Geothermal Reservoir Engineering, Stanford University, California, February 11–13. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2013/Roeroe.pdf [access: 25.07.2020].

Siahaan E.E., Soemarinda S., Fauzi A., Silitonga T., Azimudin T. & Raharjo I.B., 2005. Tectonism and Volcanism Study in the Minahasa Compartment of the North Arm of Sulawesi Related to Lahendong Geothermal Field, Indonesia. [in:] Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005, 654, 1–5.

Simandjuntak T.O. & Barber A.J., 1996. Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. [in:] Hall R., Blundell D. (eds.), Tectonic Evolution of Southeast Asia, Geological Society, London, Special Publications, 106, 185–201. https://doi.org/10.1144/GSL.SP.1996.106.01.12.

Sumintadireja P., Sudarman S. & Zaini I., 2001. The Lahendong Geothermal Field Boundary Based on Geological and Geophysical Data. [in:] Proceeding of the 5th INAGA Annual Scientific Conference & Exhibitions, Yogyakarta, March 7–10, 2001, 2001-30, 1–8.

Surana T., Subandriya A. & Agustina L., 2010a. Development of Direct Use Application by BPPT. [in:] Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010, 2831, 1–5.

Surana T., Atmojo J.P. & Prasetyo B.T., 2010b. Design of a Geothermal Energy Dryer for Tea Withering and Drying in Wayang Windu Geothermal Field. [in:] Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010, 2841, 1–8.

Tesha, 2006. Utilization of Brine Water for Copra Drying in Lahendong Geothermal Field. The United Nations University, Geothermal Training Programme, Reports 2006, Number 20, Reykjavik. https://orkustofnun.is/gogn/unugtp-report/UNU-GTP-2006-20.pdf [access: 24.05.2020].

Utami P., 2011. Hydrothermal alteration and the evolution of the Lahendong geothermal system, North Sulawei, Indonesia. University of Auckland [Ph.D. thesis].

Utami P., Siahaan E.E., Azimudin T., Browne P.R.L. & Simmons S.F., 2004. Overview of the Lahendong Geothermal Field, North Sulawesi, Indonesia: a Progress Report. [in:] Proceeding 26th New Zealand Geothermal Workshop 2004, 6–11. https://www.geothermal-energy.org/pdf/IGAstandard/NZGW/2004/Utami_et_al.pdf [access: 24.05.2020].

Utami P., Browne P.R.L., Simmons S.F. & Suroto, 2007. Lahendong and some other geothermal systems in the western pacific belt: comparison on their geologic settings, hydrology and hydrothermal alteration. [in:] Proceedings 29th New Zealand Geothermal Workshop 2007. https://www.geothermal-energy.org/pdf/IGAstandard/NZGW/2007/031_Utami.pdf [access: 24.05.2020].

Utami P., Widarto D.S., Atmojo J.P., Kamah Y., Browne P.R.L., & Warmada I.W., 2015. Hydrothermal Alteration and Evolution of the Lahendong Geothermal System, North Sulawesi. [in:] Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015, 12037. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/12037.pdf? [access: 24.05.2020].

Tomaszewska B. & Bodzek M., 2013a. Desalination of geothermal waters using a hybrid UF-RO process. Part I: Boron removal in pilot-scale tests. Desalination, 319, 99–106. https://doi.org/10.1016/j.desal.2012.05.029.

Tomaszewska B. & Bodzek M., 2013b. Desalination of geothermal waters using a hybrid UF-RO process. Part II: Membrane scaling after pilot-scale tests. Desalination, 319, 107–114. https://doi.org/10.1016/j.desal.2013.01.030.

Turchi C.S., Akar S., Cath T., Vanneste J. & Geza M., 2015. Use of low-temperature geothermal energy for desalination in the Western United States. Technical Report NREL/TP-5500-65277, National Renewable Energy Laboratory, Denver. https://www.nrel.gov/docs/fy16osti/65277.pdf [access: 11.06.2020].

Yokogawa Electric Corporation, 2007. Ensuring Safe and Reliable Operations at PT PLN Lahendong I, III and IV Geothermal Power Plants. Yokogawa. https://en.sekorm.com/doc/707020.html [access: 9.03.2020].

Zhu J., Hu K., Lu X., Huang X., Liu K. & Wu X., 2015. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy, 93, 466–483. https://doi.org/10.1016/j.energy.2015.08.098.

Downloads

Published

2022-04-21

How to Cite

Mukti, M., Tomaszewska, B., Starczewska, M., & Ningrum, E. O. (2022). Geological and environmental implications of the utilisation of geothermal energy in the Lahendong working area, Indonesia. Geology, Geophysics and Environment, 48(1), 69–82. https://doi.org/10.7494/geol.2022.48.1.69

Issue

Section

Articles