BPA – an endocrine disrupting compound in water used for drinking purposes,a snapshot from South Poland

Ewa Kmiecik, Katarzyna Styszko, Katarzyna Wątor, Małgorzata Dwornik, Barbara Tomaszewska


Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics and epoxy resins. As an endocrine-disrupting compound, it has been included in the list of substances requiring special supervision as a very high-risk substance due to its toxic influence on reproduction. BPA with a reference value of 0.01 μg/L was included in the Drinking Water Directive revision (DWD 2018). This paper presents the results of preliminary studies aimed at identifying the occurrence of BPA in different types of water, i.a. groundwater captured with house wells or flowing wells in a selected location in southern Po-land. These waters are commonly used as a source of water intended for human consumption and their quality is not regularly controlled. Additional tests were carried out for surface water, as well as water from springs used for drinking purposes. The authors also analysed tap water from various sources, i.e. surface and groundwater, as the final product of the drinking water production cycle. The results indicate the presence of BPA in water and the necessity of a detailed study on the risk of the BPA occurring in groundwater, especially in domestic wells.


emerging contaminants, endocrine disrupting compounds, groundwater protection, groundwater do-mestic wells, bisphenol A

Full Text:



Alliot F., Moreau-Guigon E., Bourges C., Desportes A.,Teil M.-J., Blanchard M. & Chevreuil M., 2014. A multi--residue method for characterization of endocrine disruptors in gaseous and particulate phases of ambient air. Atmospheric Environment, 92, 1–8, https://doi. org/10.1016/j.atmosenv.2014.02.044.

Arnold S.M., Clark K.E., Staples C.A., Klecka G.M., Dimond S.S., Caspers N. & Hentges S.G., 2013. Relevance of drinking water as a source of human exposure to bisphenol A. Journal of Exposure Science and Environmental Epidemiology, 23, 137–144, https://doi.org/10.1038/jes.2012.6.

Baker D.R. & Kasprzyk-Hordern B., 2013. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Science of the Total Environment, 454–455, 442–456, https://doi.org/10.1016/j.scitotenv.2013.03.043.

Baranauskaitė-Fedorova I., Dvarionienė J. & Nikiforov V.A., 2016. Management of pharmaceutical substances in the environment: Lithuanian case study. Water Science and Technology, 74, 6, 1255–1265, https://doi.org/10.2166/wst.2016.289.

Bilal M., Rasheed T., Iqbal H.M. & Yan Y., 2018. Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes. Science of the Total Environment, 644, 1–13, https://doi.org/10.1016/j.scitotenv.2018.06.274.

Boleda M.R., Galceran M.T. & Ventura F., 2013. Validation and uncertainty estimation of a multiresidue method for pharmaceuticals in surface and treated waters by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1286, 146–158, https://doi.org/10.1016/j.chroma.2013.02.077.

Careghini A., Mastorgio A.F., Saponaro S. & Sezenna E., 2015. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22, 5711–5741, https://doi.org/10.1007/s11356-014-3974-5.

Clayton H., 2016. EU strategic approach to pharmaceuticals in the environment (PIE). European Commision.

Corrales J., Kristofco L.A., Steele W.B., Yates B.S., Breed Ch.S., Williams E.S. & Brooks B.W., 2015. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response: An International Journal, 13(3), 1–29, https://doi.org/10.1177/1559325815598308.

Cunningham V., Buzby M., Hutchinson T., Mastrocco F., Parke N. & Roden N., 2006. Effects of human pharmaceuticals on Aquatic Life: Next Steps. How do human pharmaceuticals get into the environment, and what are their effects? Environmental Science and Technology, 40, 11, 3456–3462, https://doi.org/10.1021/es063017b.

Daneshvar A., Svanfelt J., Kronberg L. & Weyhenmeyer G.A., 2010. Winter accumulation of acidic pharmaceuticals in a Swedish River. Environmental Science and Pollution Research, 17, 4, 908–916, https://doi.org/10.1007/s11356-009-0261-y.

DWD, 2018. Proposal for a Directive of the European Parliament and of the Council on the quality of water intended for human consumption (recast). Brussels, 1.2.2018, COM(2017) 753 final, 2017/0332 (COD).

ED/01/2017. Inclusion of substances of very high concern in the Candidate List for eventual inclusion in Annex XIV (Decision of the European Chemicals Agency). 4.01.2017.

ED/01/2018. Inclusion of substances of very high concern in the Candidate List for eventual inclusion in Annex XIV (Decision of the European Chemicals Agency). 3.01.2018.

EFSA, 2019. Bisphenol A. https://bisphenol-a-europe.org/newlimits-bpa-food-contact-materials/ [access: 1.12.2019].

EU, 2010. European Union Risk Assessment Report, CAS: 80-05-7 EINECS No: 201-245-8, Environment Addendum of April 2008, 4,4’-ISOPROPYLIDENEDIPHENOL (Bisphenol-A), Part 1 Environment, http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/15063/1/lbna24588enn.pdf [access: 1.12.2019].

EU, 2013. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105 /EC as regards priority substances in the field of water policy.

EU, 2015. Commission Implementing Decision 2015/495. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document C(2015) 1756)

Fischer B., Milunov M., Floredo Y., Hofbauer P. & Joas A., 2014. Identification of relevant emission pathways to the environment and quantification of environmental exposure for Bisphenol A. Federal Environment Agency (Umweltbundesamt), https://www.umweltbundesamt. de/sites/default/files/medien/378/publikationen/texte_41_2014_identfifcation_of_relevant_emission_pathways_of_bisphenol_a_0.pdf [access: 1.12.2019].

Fu P.Q. & Kawamura K., 2010. Ubiquity of bisphenol A in the atmosphere. Environmental Pollution, 158, 10, 3138–3143, https://doi.org/10.1016/j.envpol.2010.06.040.

Goodman J.E., Peterson M.K., Hixon M.L., & Pacheco Shubin S., 2017. Derivation of an oral Maximum Allowable Dose Level for Bisphenol A. Regulatory Toxicology and Pharmacology, 86, 312–318, https://doi.org/10.1016/ j.yrtph.2017.03.024.

GWD, 2006. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.

Hansen A.B. & Lassen P., 2008. Screening of phenolic substances in the Nordic environments. Nordic Council of Ministers. Tema Nord. 2008; 530:145.

Kapelewska J., Kotowska U., Karpińska J., Kowalczuk D., Arciszewska A. & Świrydo A., 2018. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchemical Journal, 137, 292–301, https://doi.org/10.1016/j.microc.2017.11.008.

Kmiecik E., Styszko K., Wątor K., Durak J. & Dwornik M., 2017a. Obecność w wodach podziemnych substancji zaburzających gospodarkę hormonalną człowieka – wyniki badań wstępnych [The occurence of endocrine disrupting compounds in groundwater – preliminary results]. [in:] Transformacja zanieczyszczeń w środowisku: II ogólnopolska konferencja naukowa: Kraków, 14–15 grudnia 2017: materiały konferencyjne, Kraków, 11.

Kmiecik E., Wątor K., Dwornik K. & Styszko K., 2017b. Preliminary results of ibuprofen residue determination in water from southern Poland. [in:]: IWA 10th micropol & ecohazars conference: 17–20 September 2017, Vienna, Austria, Vienna, 1.

Kmiecik E., Wątor K., Styszko K. & Durak J., 2018. The occurrence of bisphenol A in selected bottled water – preliminary results. [in:] Water JPI 2018 Conference: emerging pollutants in freshwater ecosystems: 6–7th of June Helsinki, Finland: abstract book, Helsinki, 17, http://www.aka.fi/globalassets/30tiedepoliittinen-toiminta/kv-toiminta/water-jpi/water-jpi-2018-abstract-book.pdf [access: 1.12.2019].

Kozisek F., Pomykacova I., Jeligova H., Cadek V. & Svobodova V., 2013. Survey of human pharmaceuticals in drinking water in the Czech Republic. Journal of Water and Health, 11(1), 84–97, https://doi.org/10.2166/wh.2013.056.

Krishnan A.V., Stathis P., Permuth S.F., Tokes L. & Feldman D., 1993. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 32, 6, 2279–2286, https://doi.org/10.1210/en.132.6.2279.

Kryłów M. & Rezka P., 2017. Sources of endocrine-disrupting compounds and their migration to the environment. Technical Transactions, 11/2017, 127–135, https://doi.org/10.4467/2353737xct.17.197.7426.

Kuczyńska I., 2017. Wyniki pilotażowego badania zawartości substancji czynnych farmaceutyków w wodach podziemnych w próbkach wody pobranych z krajowej sieci monitoringu wód podziemnych [Results of a pilot study on the assessment of pharmaceuticals in groundwater in samples collected from the national groundwater monitoring network]. Przegląd Geologiczny, 65, 11/1, 1096–1103.

Kümmerer K., 2009. The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. Journal of Environmental Management, 90, 8, 2354–2366, https://doi.org/10.1016/j.jenvman.2009.01.023.

Küster A. & Adler N, 2014. Pharmaceuticals in the environment: scientific evidence of risks and its regulation. Philosophical Transactions of the Royal Society B, 369(1656), 20130587, https://doi.org/10.1098/rstb.2013.0587.

Lapworth D.J., Baran N., Stuart M.E. & Ward R.S., 2012. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental Pollution, 163, 287–303, https://doi.org/10.1016/j.envpol. 2011.12.034.

Lapworth D.J., Lopez B., Laabs V., Kozel R., Wolter R., Ward R., Vargas Amelin E., Besien T., Claessens J., Delloye F., Ferretti E. & Grath J., 2019. Developing a groundwater watch list for substances of emerging concern: a European perspective. Environmental Research Letters, 14, 3, 035004, https://doi.org/10.1088%2F1748-9326%2Faaf4d7.

Lin Y.Ch., Wei-Po L.W., Tung H. & Yu-Chen L.A., 2015. Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environmental Monitoring and Assessment, 187, 256, https://doi. org/10.1007/s10661-015-4497-3.

Loos R., Locoro G., Comero S., Contini S., Schwesig D., Werres F., Balsaa P., Gans O., Weiss S., Blaha L., Bolchi M. & Gawlik B.M., 2010. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Research, 44, 14, 4115–4126, https://doi.org/10.1016/j.watres.2010.05.032.

Loos R., 2012. Analytical methods relevant to the European Commission’s 2012 proposal on Priority Substances under the Water Framework Directive. JRC Science and Policy Reports, European Commission.

Loos R., 2015. Analytical methods for possible WFD 1st watch list substances. JRC Science and Policy Reports, European Commission.

Lyons R., Van de Bittner K. & Morgan-Jones S., 2014. Deposition patterns and transport mechanisms for the endocrine disruptor 4-nonylphenol across the Sierra Nevada Mountains, California. Environmental Pollution, 195, 123–132, https://doi.org/10.1016/j.envpol.2014.08.006.

MDH, 2015: Toxicological Summary for: Bisphenol A. Health Based Guidance for Water Health Risk Assessment Unit, Environmental Health Division 651-201-4899, Minnesota Department of Health.

Nosek K., Styszko K. & Gołaś J., 2014. Combined method of solid-phase extraction and GC-MS for determination of acidic, neutral, and basic emerging contaminants in wastewater (Poland). International Journal of Environmental Analytical Chemistry, 94, 10, 961–974, https://doi. org/10.1080/03067319.2014.900680.

Okońska M. & Pietrewicz K., 2018. Identification of mathematical model and parameter estimation of erythromycin migration in two different porous media based on column tests. Geologia Croatica, 71, 2, 47–53, http://www.geologia-croatica.hr/index.php/GC/article/view/gc.2018.05.

Okońska M., Kaczmarek M. & Marciniak M., 2019a. The pulse descriptors in sensitivity studies of hybrid sorption column transport models. Journal of Porous Media, 22, 6, 647–662, https://doi.org/10.1615/JPorMedia. 2019028916.

Okońska M., Marciniak M. & Kaczmarek M., 2019b. The pulse descriptors in sensitivity studies of no-sorption and single-sorption column transport models. Journal of Porous Media, 22, 5, 563–582, https://doi.org/10.1615/JPorMedia.2019028912.

Okońska M., Marciniak M., Zembrzuska J. & Kaczmarek M., 2019c. Laboratory investigations of diclofenac migration in saturated porous media – a case study. Geologos, 25, 3, 213–223, https://doi.org/10.2478/logos-2019-0023.

Paxéus N., Bester K. & El-taliawy H., 2016. Temporal variations and trends in loads of commonly used pharmaceuticals to large wastewater treatment plants in Sweden, a case study (Ryaverket). Water Science and Technology, 73, 12, 3049–3056, https://doi.org/10.2166/wst.2016.179.

Petrie B., Youdan J., Barden R. & Kasprzyk-Hordern B., 2016. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1431, 64–78, https://doi.org/10.1016/j.chroma.2015.12.036.

Postigo C. & Barceló D., 2015. Synthetic organic compounds and their transformation products in groundwater: Occurrence, fate and mitigation. Science of the Total Environment 503–504, 32–47, https://doi.org/10.1016/j.scitotenv. 2014.06.019.

Pubchem, 2017. Bisphenol A. https://pubchem.ncbi.nlm.nih.gov/compound/6623 [access: 1.12.2019].

Rasheed T., Bilal M., Nabeel F., Adeel M. & Iqbal H.M.N., 2019. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 122, 52–66, https://doi.org/10.1016/j.envint.2018.11.038.

Rocha M.J., Cruzeiro C. & Rocha E., 2013. Development and validation of a GC–MS method for the evaluation of 17 endocrine disruptor compounds, including phytoestrogens and sitosterol, in coastal waters – their spatial and seasonal levels in Porto costal region (Portugal). Journal of Water and Health, 11, 2, 281–296, https://doi.org/10.2166/wh.2013.021.

Rudel R.A., Camann D.E., Spengler J.D., Korn L.R. & Brody J.G., 2003. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environmental Science and Technology, 37, 20, 4543–4553, https://doi.org/10.1021/es0264596.

Rykowska I. & Wasiak W., 2006. Properties, Threats, and Methods of Analysis of Bisphenol A and Its Derivatives. Acta Chromatographica, 16, 7–27.

Salgueiro-González N., López de Alda M.J., Muniategui-Lorenzo S., Prada-Rodríguez D. & Barceló D., 2015. Analysis and occurrence of endocrine-disrupting chemicals in airborne particles. TrAC, Trends in Analytical Chemistry, 66, 45–52, https://doi.org/10.1016/j.trac.2014.11.006.

Sánchez-Brunete C., Miguel E. & Tadeo J.L., 2009. Determination of tetrabromobisphenol-A, tetrachlorobisphenol-A and bisphenol-A in soil by ultrasonic assisted extraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1216, 29, 5497–5503, https://doi.org/10.1016/j.chroma.2009.05.065.

Sanderson H., 2011. Presence and risk assessment of pharmaceuticals in surface water and drinking water. Water Science and Technology, 63, 10, 2143–2148, https://doi.org/10.2166/wst.2011.341.

Schaider L.A., Rudel R.A., Ackerman J.M., Dunagan S.C. & Brody J.G., 2014. Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Science of the Total Environment, 468–469, 384–393, https://doi.org/10.1016/j.scitotenv.2013.08.067.

Snyder S.A. & Benotti M.J., 2010. Endocrine disruptors and pharmaceuticals: implications for water sustainability. Water Science and Technology, 61, 1, 145–154, https://doi.org/10.2166/wst.2010.791.

Styszko K., 2016. Sorption of emerging organic micropollutants onto fine sediments in a water supply dam reservoir, Poland. Journal of Soil and Sediments, 16, 2, 677–686, https://doi.org/10.1007/s11368-015-1239-7.

Vandenberg L.N., Hauser R., Marcus M., Olea N. & Welshons W.V., 2007. Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24, 2, 139–177, https://doi.org/10.1016/j.reprotox.2007.07.010.

Vogel S.A., 2009. The politics of plastics: the making and unmaking of bisphenol a “safety”. American Journal of Public Health, 99, 3, 559–566, https://doi.org/10.2105/AJPH.2008.159228.

Vorkamp K., Bossi R., Bester K., Bollmann U.E. & Boutrup S., 2014. New priority substances of the European Water Framework Directive: biocides, pesticides and brominated flame retardants in the aquatic environment of Denmark. Science of the Total Environment, 470–471, 459–468, https://doi.org/10.1016/j.scitotenv.2013.09.096.

Wazir U. & Mokbel K., 2019. Bisphenol A: A Concise Review of Literature and a Discussion of Health and Regulatory Implications. In vivo, 33, 1421–1423, https://doi.org/10.21873/invivo.11619.

Wątor K., Kmiecik E., Dwornik M. & Styszko K., 2017. Bisfenol A w wodach – wyniki badań wstępnych [Bisphenol A in waters – results of preliminary studies]. Acta Balneologica, 59, 3, 244–245.

Webb S., Ternes T., Gibert M. & Olejniczak K., 2013. Indirect human exposure to pharmaceuticals via drinking water. Toxicology Letters, 142, 157–167, https://doi.org/10.1016/S0378-4274(03)00071-7.

WFD, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.

WHO, 2012. Pharmaceuticals in drinking-water. World Health Organization, Geneva.

Wilson N.K., Lyu C., Chuang J.C. & Morgan M.K., 2001. Levels of persistent organic pollutants in several child day care centers. Journal of Exposure Analysis and Environmental Epidemiology, 11, 449–458, https://doi.org/10.1038/sj.jea.7500190.

Witczak S., Kania J. & Kmiecik E., 2013. Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania. Biblioteka Monitoringu Środowiska, Inspekcja Ochrony Środowiska, Warszawa, www.gios.gov.pl/images/dokumenty/raporty/ebook2_20130422.pdf [access: 1.12.2019].

Yan L., Lv D., Huang X., Shi H. & Zhang G., 2016. Adsorption characteristics of bisphenol-A on tailored activated carbon in aqueous solutions. Water Science and Technology, 74, 7, 1744–1751, https://doi.org/10.2166/wst.2016.325.

DOI: https://doi.org/10.7494/geol.2020.46.1.5


  • There are currently no refbacks.