The valorization of flotation tailings in terms of the concept of the circular economy: characterization, environmental risk assessment, and waste utilization routes

.

Authors

DOI:

https://doi.org/10.7494/geol.2024.50.4.401

Keywords:

flotation tailings, recovery, extraction, waste management

Abstract

Flotation tailings originating from copper ore processing were evaluated in terms of chemical and mineralogical features, leaching, and resource potential. The results demonstrated that flotation tailings show varying degrees of the leachability of elements when exposed to different pH conditions (2–13); the Zn, Cu and Co leachabilities decrease as pH increases, whereas Mo, Ag and Sb revealed U-shaped leaching trend as a function of pH. Flotation tailings were found to be fairly reactive when exposed to water leaching and rainfall conditions. The environmental risk analysis demonstrated Zn to be the most susceptible element to liberation from the flotation tailings studied. Recovery tests demonstrated sulfuric acid to be slightly more efficient extracting agent as compared to citric acid. Hybrid approach to metal recovery was rather unsuitable for studied tailings due to lower extraction yield (not exceeding 20%) as compared to chemical treatment (not exceeding 40%).

Downloads

Download data is not yet available.

References

Achzet B. & Helbig C., 2013. How to evaluate raw material supply risks - an overview. Resources Policy, 38(4), 435–447. https://doi.org/10.1016/j.resourpol.2013.06.003.

Allen R.D., Kramer H., 1953. Occurrence of bassanite in two desert basins in Southeastern California. American Mineralogist, 38(11–12), 1266–1268.

Antonijević M.M., Dimitrijević M.D., Stevanović Z.O., Serbula S.M. & Bogdanovic G.D., 2008. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. Journal of Hazardous Materials, 158(1), 23–34. https://doi.org/10.1016/j.jhazmat.2008.01.063.

Araujo F.S.M., Taborda-Llano I., Nunes E.B. & Santos R.M., 2022. Recycling and reuse of mine tailings: A review of advancements and their implications. Geosciences, 12(9), 319. https://doi.org/10.3390/geosciences12090319.

Arndt N.T., Fontboté L., Hedenquist J.W., Kesler S.E., Thompson J.F.H. & Wood D.G., 2017. Future global mineral resources. Geochemical Perspectives, 6(1), 1–171. https://doi.org/10.7185/geochempersp.6.1.

Bakalarz A., 2019. Chemical and mineral analysis of flotation tailings from stratiform copper ore from Lubin concentrator plant (SW Poland). Mineral Processing and Extractive Metallurgy Review, 40(6), 437–446. https://doi.org/10.1080/08827508.2019.1667778.

Bakalarz A., 2021. An analysis of copper concentrate from a kupferschiefer-type ore from Legnica-Glogow Copper Basin (SW Poland). Mineral Processing and Extractive Metallurgy Review, 42(8), 552–564. https://doi.org/10.1080/08827508.2021.1971663.

Baran A., Śliwka M. & Lis M., 2013. Selected properties of flotation tailings wastes deposited in the Gilów and Żelazny Most waste reservoirs regarding their potential environmental management. Archives of Mining Sciences, 58(3), 969–978. https://doi.org/10.2478/amsc-2013-0068.

Beckingham L.E., Mitnick E.H., Steefel C.I., Zhang S., Voltolini M., Swift A.M., Yang L., Cole D.R., Sheets J.M., Ajo-Franklin J.B., DePaolo D.J., Mito S. & Xue Z., 2016. Evaluation of mineral reactive surface area estimates for prediction of reactivity of a multi-mineral sediment. Geochimica et Cosmochimica Acta, 188, 310–329. https://doi.org/10.1016/j.gca.2016.05.040.

Borg G., Piestrzyński A., Bachmann G.H., Puttman W., Walther S. & Fiedler M., 2012. An Overview of the European Kup-ferschiefer Deposits. [in:] Hedenquist J.W., Harris M., Camus F. (eds.), Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Special Publications of the Society of Economic Geologists, 16, Society of Economic Geologists, Littleton, CO, USA, 455–486. https://doi.org/10.5382/SP.16.

CEN (Comité Européen de Normalisation), 2002. Characterisation of waste – Leaching – Compliance test for leaching of granular waste materials and sludges – Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction) (EN 12457-2:2002). https://standards.iteh.ai/catalog/standards/cen/db6fbdf3-1de7-457c-a506-46c4898e3f09/en-12457-2-2002?srsltid=AfmBOoqln2zRPvynqG0PAIkGZWC6Gp1VXo-LI206tsJUJ2PjleRBHhMk [access: 28.04.2021].

Chen T., Wen X.C., Zhang L.J., Tu S.C., Zhang J.H., Sun R.N. & Yan B., 2022. The geochemical and mineralogical controls on the release characteristics of potentially toxic elements from lead/zinc (Pb/Zn) mine tailings. Environmental Pollution, 315, 120328. https://doi.org/10.1016/j.envpol.2022.120328.

Chmielewski T., Luszczkiewicz A. & Konieczny A., 2010. Processing of hard-to-tread copper ore and flotation middlings using chemical treatment. [in:] XXV International Mineral Processing Congress (IMPC) 2010, IMPC, 1799–1806.

Conić V., Stanković S., Marković B., Božić D., Stojanović J. & Sokić M., 2020. Investigation of the optimal technology for copper leaching from old flotation tailings of the copper mine bor (Serbia). Metallurgical and Materials Engineering, 26(2), 209–222. https://doi.org/10.30544/514.

Costis S., Coudert L., Mueller K.K., Cecchi E., Neculita C.M. & Blais J.F., 2020. Assessment of the leaching potential of flotation tailings from rare earth mineral extraction in cold climates. Science of the Total Environment, 732, 139225. https://doi.org/10.1016/j.scitotenv.2020.139225.

Drif B., Taha Y., Hakkou R. & Benzaazoua M., 2018. Recovery of residual silver-bearing minerals from low-grade tailings by froth flotation: The case of Zgounder mine, Morocco. Minerals, 8(7), 273. https://doi.org/10.3390/min8070273.

Drobe M., Haubrich F., Gajardo M. & Marbler H., 2021. Processing tests, adjusted cost models and the economies of reprocessing copper mine tailings in Chile. Metals (Basel), 11(1), 103. https://doi.org/10.3390/met11010103.

Duczmal-Czernikiewicz A., 2013. Mineralogia i geochemia osadów po flotacji rud miedzi starego i nowego zagłębia miedzio-wego. Bogucki Wydawnictwo Naukowe, Poznań.

Duczmal-Czernikiewicz A. & Suchan J., 2015. Nagromadzenia metali w osadnikach poflotacyjnych na Dolnym Śląsku. Biule-tyn Państwowego Instytutu Geologicznego, 465, 67–76.

Duczmal-Czernikiewicz A., Diatta B. & Rachwał L., 2012. Mineralogia odpadów po flotacji rud miedzi oraz możliwość ich rolniczego zastosowania. Biuletyn Państwowego Instytutu Geologicznego, 448, 371–380.

Edraki M., Baumgartl T., Manlapig E., Bradshaw D., Franks D.M. & Moran C.J., 2014. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. Journal of Cleaner Production, 84, 411–420. https://doi.org/10.1016/j.jclepro.2014.04.079.

Falagán C., Grail B.M. & Johnson D.B., 2017. New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 106, 71–78. https://doi.org/10.1016/j.mineng.2016.10.008.

Gadd G.M., 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643. https://doi.org/10.1099/mic.0.037143-0.

Gomes P. & Valente T., 2024. Seasonal impact of acid mine drainage on water quality and potential ecological risk in an old sulfide exploitation. Environmental Science and Pollution Research, 31(14), 21124–21135. https://doi.org/10.1007/s11356-024-32367-1.

Gümüşsoy A., Başyiğit M. & Uzun Kart E., 2023. Economic potential and environmental impact of metal recovery from copper slag flotation tailings. Resources Policy, 80, 103232. https://doi.org/10.1016/j.resourpol.2022.103232.

Gusiatin Z.M. & Kulikowska D., 2014. The usability of the IR, RAC and MRI indices of heavy metal distribution to assess the environmental quality of sewage sludge composts. Waste Management, 34(7), 1227–1236. https://doi.org/10.1016/j.wasman.2014.04.005.

Hageman P.L. & Briggs P.H., 2000. A Simple Field Leach Test for Rapid Screening and Qualitative Characterization of Mine Waste Dump Material on Abandoned Mine Lands. Open-File Report 2000-15, U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia. https://doi.org/10.3133/ofr0015.

Hageman P.L., Seal R.R., Diehl S.F., Piatak N.M. & Lowers H.A., 2015. Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Applied Geochemistry, 57, 125–139. https://doi.org/10.1016/j.apgeochem.2014.12.007.

Hao X., Liang Y., Yin H., Ma L., Xiao Y., Liu Y., Qiu G. & Liu X., 2016. The effect of potential heap construction methods on column bioleaching of copper flotation tailings containing high levels of fines by mixed cultures. Minerals Engineering, 98, 279–285. https://doi.org/10.1016/j.mineng.2016.07.015.

Hellweg S., Hofstetter T.B. & Hungerbühler K., 2005. Time-dependent life-cycle assessment of slag landfills with the help of scenario analysis: The example of Cd and Cu. Journal of Cleaner Production, 13(3), 301–320. https://doi.org/10.1016/j.jclepro.2004.02.016.

Ilyas S. & Lee J.C., 2015. Hybrid leaching: An emerging trend in bioprocessing of secondary resources. [in:] Abhilash P., Pan-dey B.D. & Natarajan K.A. (eds.), Microbiology for Minerals, Metals, Materials and the Environment, CRC Press, Boca Raton, 359–382.

Innocenzi V., Ferella F., De Michelis I. & Vegliò F., 2015. Treatment of fluid catalytic cracking spent catalysts to recover lanthanum and cerium: Comparison between selective precipitation and solvent extraction. Journal of Industrial and Engineering Chemistry, 24, 92–97. https://doi.org/10.1016/j.jiec.2014.09.014.

ISO (International Organization for Standardization), 2016. Water quality – Application of inductively coupled plasma mass spectrometry (ICP-MS) – Part 2: Determination of selected elements including uranium isotopes (ISO 17294-2:2016). https://www.iso.org/standard/62962.html.

Jambor J.L., Dutrizac J.E., Groat L.A. & Raudsepp M., 2002. Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environmental Geology, 43(1–2), 1–17. https://doi.org/10.1007/s00254-002-0615-y.

Kamradt A., Walther S., Schaefer J., Hedrich S. & Schippers A., 2018. Mineralogical distribution of base metal sulfides in processing products of black shale-hosted Kupferschiefer-type ore. Minerals Engineering, 119, 23–30. https://doi.org/10.1016/j.mineng.2017.11.009.

Kasowska D., Gediga K. & Spiak Z., 2018. Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings. Environmental Science and Pollution Research, 25(1), 824–835. https://doi.org/10.1007/s11356-017-0451-y.

Kisielowska E. & Kasińska-Pilut E., 2005. Copper bioleaching from after-flotation waste using microfungi. Acta Montanistica Slovaca, 10(1), 156–160.

Kisielowska E., Kasińska-Pilut E. & Jaśkiewicz J., 2007. Badania nad wpływem wybranych czynników fizykochemicznych na efektywność procesu bioługowania odpadów poflotacyjnych przy wykorzystaniu grzybów pleśniowych z gatunku Aspergillus Niger. Górnictwo i Geoinżynieria, 31(3/1), 247–255.

Kossoff D., Dubbin W.E., Alfredsson M., Edwards S.J., Macklin M.G. & Hudson-Edwards K.A., 2014. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Applied Geochemistry, 51, 229–245. https://doi.org/10.1016/j.apgeochem.2014.09.010.

Kotarska I., 2012. Odpady wydobywcze z górnictwa miedzi w Polsce – bilans, stan zagospodarowania i aspekty środowiskowe. Cuprum: Czasopismo Naukowo-Techniczne Górnictwa Rud, 4, 45–63.

Krawczyńska M., Kołwzan B., Gediga K., Dziubek A.M., Grabas K. & Karpenko E., 2020. Evaluation of the possibility of phytostabilization of post-flotation tailing ponds. Environment Protection Engineering, 41(1), 157–167. https://doi.org/10.37190/epe150112.

Kucha H., 2007. Mineralogia kruszcowa i geochemia ciała rudnego złoża Lubin-Sieroszowice. Biuletyn Państwowego Instytutu Geologicznego, 423, 77–94.

Kumar P.S. & Yaashikaa P.R., 2020. Chapter 20 – Recent trends and challenges in bioleaching technologies. [in:] Rathinam N.K., Sani R.K. (eds.), Biovalorisation of Wastes to Renewable Chemicals and Biofuels, Elsevier, 373–388. https://doi.org/10.1016/b978-0-12-817951-2.00020-1.

Lackovic J.A., Nikolaidis N.P., Chheda P., Carley R.J. & Patton E., 1997. Evaluation of batch leaching procedures for estimating metal mobility in glaciated soils. Ground Water Monitoring and Remediation, 17(3), 231–240. https://doi.org/10.1111/j.1745-6592.1997.tb00598.x.

Lekovski R., Mikić M. & Kržanović D., 2013. Impact of the flotation tailing dumps on the living environment of Bor and protective measures. Mining and Metallurgy Engineering Bor, 2, 97–116. https://doi.org/10.5937/mmeb1302097L.

Lorenzo-Tallafigo J., Iglesias-González N., Romero-García A., Mazuelos A., Ramírez del Amo P., Romero R. & Carranza F., 2022. The reprocessing of hydrometallurgical sulphidic tailings by bioleaching: The extraction of metals and the use of bio-genic liquors. Minerals Engineering, 176, 107343. https://doi.org/10.1016/j.mineng.2021.107343.

Lottermoser B.G., 2011. Recycling, reuse and rehabilitation of mine wastes. Elements, 7(6), 405–410. https://doi.org/10.2113/gselements.7.6.405.

Łuszczkiewicz A., 2000. Koncepcje wykorzystania odpadów flotacyjnych z przeróbki rud miedzi w regionie legnic-ko-głogowskim. Inżynieria Mineralna, 1(1), 25–35.

Łuszczkiewicz A., Konopacka Z. & Muszer A., 2006. Określenie możliwości ograniczenia strat miedzi i srebra w odpadach poflotacyjnych Zakładów Wzbogacania Rud KGHM Polska Miedź S.A. [research report no. S-82/2006]. Politechnika Wro-cławska, Wydział Geoinżynierii, Górnictwa i Geologii, Instytut Górnictwa, Wrocław.

Mackay I., Videla A.R. & Brito-Parada P.R., 2020. The link between particle size and froth stability – Implications for reprocessing of flotation tailings. Journal of Cleaner Production, 242, 118436. https://doi.org/10.1016/j.jclepro.2019.118436.

Manca P.P., Massacci G., Pintus D. & Sogos G., 2021. The flotation of sphalerite mine tailings as a remediation method. Minerals Engineering, 165, 106862. https://doi.org/10.1016/j.mineng.2021.106862.

Mikoda B. & Gruszecka-Kosowska A., 2018. Mineral and chemical characteristics, textural parameters, and the mobility of the selected elements of flotation waste, originating from the Polish copper-mining industry. Human and Ecological Risk Assessment, 24(5), 1216–1232. https://doi.org/10.1080/10807039.2017.1410694.

Mikoda B., Kucha H., Potysz A. & Kmiecik E., 2019. Metallurgical slags from Cu production and Pb recovery in Poland – their environmental stability and resource potential. Applied Geochemistry, 101, 62–74. https://doi.org/10.1016/j.apgeochem.2018.11.017.

Miretzky P., Avendaño M.R., Muñoz C. & Carrillo-Chavez A., 2011. Use of partition and redistribution indexes for heavy metal soil distribution after contamination with a multi-element solution. Journal of Soils and Sediments, 11(4), 619–627. https://doi.org/10.1007/s11368-011-0343-6.

Mitlin D., 1992. Sustainable development: A guide to the literature. Environment and Urbanization, 4(1), 111–124. https://doi.org/10.1177/095624789200400112.

Norwood W.P., Borgmann U., Dixon D.G. & Wallace A., 2003. Effects of metal mixtures on aquatic biota: A review of observations and methods. Human and Ecological Risk Assessment, 9(4), 795–811. https://doi.org/10.1080/713610010.

Pathak A., Srichandan H. & Kim D.J., 2014. Fractionation behavior of metals (Al, Ni, V, and Mo) during bioleaching and chemical leaching of spent petroleum refinery catalyst. Water, Air, & Soil Pollution, 225(3), 1893. https://doi.org/10.1007/s11270-014-1893-1.

Pawlikowski M. & Bożęcki P., 2016. Badania mineralogiczno-geochemiczne odpadów poflotacyjnych z KGHM Polska Miedź S.A. pod kątem ich wykorzystania oraz ochrony środowiska. Rudy i Metale Nieżelazne: Recykling, 61(3), 107–114. https://doi.org/10.15199/67.2016.3.1.

Piatak N.M. & Ettler V., 2021. Chapter 1. Introduction: Metallurgical Slags – Environmental Liability or Valuable Resource? [in:] Piatak N.M. & Ettler V. (eds.), Metallurgical Slags – Environmental Geochemistry and Resource Potential, Chemistry in the Environment, The Royal Society of Chemistry, 1–13. https://doi.org/10.1039/9781839164576-00001.

Poling G.W., 1995. Mining/milling processes and tailings generation. Marine Georesources & Geotechnology, 13(1–2), 19–31. https://doi.org/10.1080/10641199509388276.

Pueyo M., Mateu J., Rigol A., Vidal M., López-Sánchez J.F. & Rauret G., 2008. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152(2), 330–341. https://doi.org/10.1016/j.envpol.2007.06.020.

Räisänen M.L., Kauppila P.M. & Myöhänen T., 2010. Suitability of static tests for acid rock drainage assessment of mine waste rock. Bulletin of the Geological Society of Finland, 82(2), 101–111. https://doi.org/10.17741/bgsf/82.2.003.

Romero-García A., Iglesias-González N., Romero R., Lorenzo-Tallafigo J., Mazuelos A. & Carranza F., 2019. Valorisation of a flotation tailing by bioleaching and brine leaching, fostering environmental protection and sustainable development. Journal of Cleaner Production, 233, 573–581. https://doi.org/10.1016/j.jclepro.2019.06.118.

Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ście-ków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych. Dz.U. 2019 poz. 1311 [Regulation of Ministry of Maritime Affairs and Inland Navigation on substances particularly harmful to the aquatic environment and conditions to be met when discharging sewage into waters or into the ground, as well as when discharging rainwater or snowmelt into water or into water facilities. Journal of Laws of 2019, item 1311]. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 [access: 28.04.2021].

Sagdieva M.G., Borminskiy S.I., Rakhmatullaeva Z.E., Tonkikh A.K., Sanakulov K.S. & Scott B., 2007. Biohydrometallurgical processing of flotation tailings from different copper mills. Advanced Materials Research, 20–21, 299–303. https://doi.org/10.4028/www.scientific.net/amr.20-21.299.

Shengo L.M., 2021. Review of practices in the management of mineral wastes: The case of waste rocks and mine tailings. Water, Air, & Soil Pollution, 232(7), 273. https://doi.org/10.1007/s11270-021-05198-w.

Smith R.W. & Miettinen M., 2005. Microorganisms in flotation and flocculation: Future technology or laboratory curiosity? Minerals Engineering, 19(6–8), 548–553. https://doi.org/10.1016/j.mineng.2005.09.007.

Stewart W.A., Miller S.D. & Smart R., 2006. Advances in acid rock drainage (ARD) characterisation of mine wastes. [in:] 7th International Conference on Acid Rock Drainage 2006 (ICARD): Also Serves as the 23rd Annual Meetings of the American Society of Mining and Reclamation: St. Louis, Missouri, USA, 26–30 March 2006, Curran Associates, Red Hook, NY, 2098–2119. https://doi.org/10.21000/jasmr06022098.

Tilton J.E. (ed.), 2015. World Metal Demand: Trends and Prospects. Routledge, London. https://doi.org/10.4324/9781315682082.

Ujaczki É., Zimmermann Y.S., Gasser C.A., Molnár M., Feigl V. & Lenz M., 2017. Red mud as secondary source for critical raw materials – extraction study. Journal of Chemical Technology & Biotechnology, 92(11), 2835–2844. https://doi.org/10.1002/jctb.5300.

U.S. EPA (United States Environmental Protection Agency), 2012. Test Method 1313: Liquid-Solid Partitioning as a Function of Extract pH Using a Parallel Batch Extraction Procedure (SW-846). https://www.epa.gov/hw-sw846/sw-846-test-method-1313-liquid-solid-partitioning-function-extract-ph-using-parallel-batch [access: 28.04.2021].

Yilmaz E., 2011. Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 27(2), 89–112.

Yin M., Tsang D.C.W., Sun J., Wang J., Shang J., Fang F., Wu Y., Liu J., Song G., Xiao T. & Chen D., 2020. Critical insight and indication on particle size effects towards uranium release from uranium mill tailings: Geochemical and mineralogical aspects. Chemosphere, 250, 126315. https://doi.org/10.1016/j.chemosphere.2020.126315.

Zhai J., Zhang S.R., Zhang Z., Melnikov A. & Li H., 2022. Study on the geometry characteristics of soil primary mineral particles under cryogenic action. Scientific Reports, 12(1), 16766. https://doi.org/10.1038/s41598-022-21023-8.

Zhang X.-L., Kou J., Sun C.-B., Zhang R.-Y., Su M. & Li S.-F., 2021. Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings. International Journal of Minerals, Metallurgy and Material, 28(6), 944–955. https://doi.org/10.1007/s12613-020-2093-1.

Žibret G., Lemiere B., Mendez A.M., Cormio C., Sinnett D., Cleall P., Szabó K. & Carvalho M.T., 2020. National mineral waste databases as an information source for assessing material recovery potential from mine waste, tailings and metallurgical waste. Minerals, 10(5), 446. https://doi.org/10.3390/min10050446.

Downloads

Published

2024-12-18

Issue

Section

Articles

How to Cite

Mikoda, B., Potysz, A., Siepak, M., & Kmiecik, E. (2024). The valorization of flotation tailings in terms of the concept of the circular economy: characterization, environmental risk assessment, and waste utilization routes: . Geology, Geophysics and Environment, 50(4), 401–420. https://doi.org/10.7494/geol.2024.50.4.401