Preliminary studies of photolysis and TiO2-montmorillonite-immobilised photocatalysis processes for the degradation of organic pollutants in water treatment
DOI:
https://doi.org/10.7494/geol.2022.48.4.393Keywords:
surface waters, water contamination, advanced oxidation processes, biological oxygen demandAbstract
Organic compounds are the most diverse group of contaminants. The largest anthropogenic source of these contaminants in water is municipal and industrial wastewater. One of the indicators of surface water pollution is biological oxygen demand (BOD). Purifying water from organic micropollutants is a serious challenge and requires the development of newer and more effective methods. The removal of such contaminants is most effective only in advanced oxidation processes (AOP), which include UV photolysis and photocatalysis. The presented results are from preliminary research to evaluate the effectiveness of water treatment by ultraviolet (UV) photolysis and photocatalysis. Treatment efficiency was evaluated on the basis of changes in the BOD index before and after the advanced oxidation process of raw water. The values of the BOD5 index determined in accordance with PN-EN 25813:1997. The exposure time of the samples was a maximum of 60 minutes. The tested material was water samples taken from the Rudawa River, which is one of the drinking water sources for Krakow. The initial BOD5 value (expressed as concentration of O2) for all samples was about 8 mg/L but it has decreased to over 2 mg/L due to AOP processes. This means that after an hour, more than 75% of organic compounds present in the raw water were removed. For photocatalysis (TiO2-MMT), the exposure time of the samples was a maximum of 35 minutes. Water samples taken from the Rudawa River were also used as test material. The initial BOD5 value for all samples was about
9 mg/L but it has decreased to about 4 mg/L due to the photocatalysis process. This means that after 35 minutes, 55% of the organic compounds present in the raw water were removed.
Downloads
References
Adak A., Bandyopadhyay M. & Pal A., 2005. Removal of anionic surfactant from wastewater by alumina: A case study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254(1–3), 165–171. https://doi.org/10.1016/j.colsurfa.2004.12.004.
Andreozzi R., Caprio V., Insola A. & Marotta R., 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51–59. https://doi.org/10.1016/S0920-5861(99)00102-9.
Baena-Nogueras R.M., González-Mazo E. & Lara-Martín P.A., 2017. Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation. Science of the Total Environment, 590–591, 643–654. https://doi.org/10.1016/j.scitotenv.2017.03.015.
Bain K., Rodriguez J.M.G. & Towns M.H., 2018. Zero-order chemical kinetics as a context to investigate student understanding of catalysts and half-life. Journal of Chemical Education, 95(5), 716–725. https://doi.org/10.1021/acs.jchemed.7b00974.
Bărbulescu A. & Barbeş L., 2020. Assessing the water quality of the Danube River (at Chiciu, Romania) by statistical methods. Environmental Earth Sciences, 79(6), 1–14. https://doi.org/10.1007/s12665-020-8872-1.
Basant N., Gupta S., Malik A. & Singh K.P., 2010. Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water – A case study. Chemometrics and Intelligent Laboratory Systems, 104(2), 172–180. https://doi.org/10.1016/j.chemolab.2010.08.005.
Behnajady M.A., Modirshahla N. & Ghanbary F., 2007. A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1–2), 98–102. https://doi.org/10.1016/j.jhazmat.2007.02.003.
Bubev E., Georgiev A. & Machkova M., 2016. Kinetic study on UV-absorber photodegradation under different conditions. Chemical Physics, 476, 69–79. https://doi.org/10.1016/j.chemphys.2016.08.004.
Bus A. & Mosiej J., 2018. Kształtowanie jakości wody odpływającej i dopływającej z kompleksu zbiorników Niewiadoma zlokalizowanego na rzece Cetyni. Rocznik Ochrona Środowiska, 20, 1793–1810.
Butman M.F., Gushchin A.A., Ovchinnikov N.L., Gusev G.I., Zinenko N.V., Karamysheva S.P. & Krämer K.W., 2020. Synergistic effect of dielectric barrier discharge plasma and TiO2-pillared montmorillonite on the degradation of rhodamine B in an aqueous solution. Catalysts, 10(359), 1–18. https://doi.org/10.3390/catal10040359.
Chee G.J., Nomura Y. & Karube I., 1999. Biosensor for the estimation of low biochemical oxygen demand. Analytica Chimica Acta, 379, 185–191. https://doi.org/10.1016/S0003-2670(98)00680-1.
Deng Y. & Zhao R., 2015. Advanced Oxidation Processes (AOPs) in wastewater treatment. Current Pollution Reports, 1, 167–176. https://doi.org/10.1007/s40726-015-0015-z.
Djellabi R., Ghorab M.F., Cerrato G., Morandi S., Gatto S., Oldani V., Di Michele A. & Bianchi C.L., 2015. Photoactive TiO2-montmorillonite composite for degradation of organic dyes in water. Journal of Photochemistry and Photobiology A: Chemistry, 295, 57–63. https://doi.org/10.1016/j.jphotochem.2014.08.017.
Doll T.E. & Frimmel F.H., 2003. Fate of pharmaceuticals – Photodegradation by simulated solar UV-light. Chemosphere, 52(10), 1757–1769. https://doi.org/10.1016/S0045-6535(03)00446-6.
Dong G., Chen B., Liu B., Hounjet L.J., Cao Y., Stoyanov S.R., Yang M. & Zhang B., 2022. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. Water Research, 211, 118047. https://doi.org/10.1016/j.watres.2022.118047.
Ertugay N. & Acar F.N., 2017. Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10 (Supp. 1), S1158–S1163. https://doi.org/10.1016/j.arabjc.2013.02.009.
European Environment Agency (EEA), 2022. Oxygen consuming substances in European rivers. https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/oxygen-consuming-substances-in-rivers-9 [access: 15.02.2022].
Floury M., Delattre C., Ormerod S.J. & Souchon Y., 2012. Global versus local change effects on a large European river. Science of the Total Environment, 441, 220–229. https://doi.org/10.1016/j.scitotenv.2012.09.051.
Franke S., Heinzel N., Specht M. & Francke W., 2005. Identification of organic pollutants in waters and sediments from the Lower Mulde river area. Acta Hydrochimica et Hydrobiologica, 33(5), 519–542. https://doi.org/10.1002/aheh.200400588.
Gervais G., Brosillon S., Laplanche A. & Helen C., 2008. Ultra-pressure liquid chromatography-electrospray tandem mass spectrometry for multiresidue determination of pesticides in water. Journal of Chromatography A, 1202(2), 163–172. https://doi.org/10.1016/j.chroma.2008.07.006.
Grabowska E., 2011. Otrzymywanie nowych fotokatalizatorów o podwyższonej aktywności w świetle UV oraz VIS. Wydział Chemiczny Politechniki Gańskiej, Gadańsk [Ph.D. thesis].
Hachoł J. & Krzemińska A., 2008. Wpływ regulacji rzeki Smortawy na przebieg procesów samooczyszczania na przykładzie wskaźników tlenowych [Influence of the regulation of the Smortawa river on the self-purification processes for oxygen indicators]. Infrastruktura i Ekologia Terenów Wiejskich, 9, 207–216.
Heiskary S. & Markus H., 2001. Establishing relationships among nutrient concentrations, phytoplankton abundance, and biochemical oxygen demand in Minnesota, USA, Rivers. Lake and Reservoir Management, 17(4), 251–262. https://doi.org/10.1080/07438140109354134.
Jagoda A., Żukowski W. & Dąbrowska B., 2015. Investigations of the presence of caffeine in the Rudawa River, Kraków, Poland. Environmental Monitoring and Assessment, 187(9), 1–12. https://doi.org/10.1007/s10661-015-4760-7.
Kasza T., 2016. Badanie właściwości fotokatalitycznych i charakterystyka fizykochemiczna nanokrystalicznych filmów TiO2 na podłożu ceramicznym. Wydział Inżynierii i Technologii Chemicznej Politechniki Krakowskiej, Kraków [Ph.D. thesis].
Kindler J., 2013. Zasoby wodne dziś i jutro a perspektywy wyżywienia świata. [in:] Galwas B. & Wyżnikiewicz B. (red. nauk.), Czy kryzys światowych zasobów?, Komitet Prognoz “Polska 2000 Plus” przy Prezydium Polskiej Akademii Nauk, Warszawa, 199–211.
Kocot K. & Dyrda G., 2015. Fotodegradacja wybranych pochodnych fenolu w środowisku wodnym. Inżynieria Środowiska – Młodym Okiem, 11, 41–65.
Kovačič A., Česen M., Laimou-Geraniou M., Lambropoulou D., Kosjek T., Heath D. & Heath E., 2019. Stability, biological treatment and UV photolysis of 18 bisphenols under laboratory conditions. Environmental Research, 179(A), 108738. https://doi.org/10.1016/j.envres.2019.108738.
Książek S., Kida M. & Koszelnik P., 2015. Występowanie perfluorowanych związków organicznych w środowisku i fizykochemiczne metody usuwania ich z roztworów wodnych. Czasopismo Inżynierii Lądowej, Środowiska i Architektury, 32(62), 221–238. https://doi.org/10.7862/rb.2015.52.
Lewkiewicz-Małysa A. & Macuda J., 2008. Ocena jakości wód powierzchniowych dopływajacych do Zbiornika Solina. Wiertnicto Nafta Gaz, 25(2), 447–452.
Li H., Yao Y., Yang X., Zhou X., Lei R. & He S., 2022. Degradation of phenol by photocatalysis using TiO2/montmorillonite composites under UV light. Environmental Science and Pollution Research, 29, 68293–68305. https://doi.org/10.1007/s11356-022-20638-8.
Malaj E., von der Ohe P.C., Grote M., Kühne R., Mondy C.P., Usseglio-Polatera P., Brack W. & Schäfer R.B., 2014. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9549–9554. https://doi.org/10.1073/pnas.1321082111.
Martinez S., Delgado M. & Jarvis P., 2016. Removal of herbicide mecoprop from surface water using Advanced Oxidation Processes (AOPS). International Journal of Environmental Research and Public Health, 10(2), 291–296.
Ohe P.C., von der, Dulio V., Slobodnik J., De Deckere E., Kühne R., Ebert R.U., Ginebreda A. et al., 2011. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Science of the Total Environment, 409(11), 2064–2077. https://doi.org/10.1016/j.scitotenv.2011.01.054.
Oki T. & Kanae S., 2006. Global hydrological cycles and freshwater resources. Science, 313(5790), 1068–1073. https://doi.org/10.1126/science.1128845.
Pereira V.J., Weinberg H.S., Linden K.G. & Singer P.C., 2007. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environmental Science and Technology, 41(5), 1682–1688. https://doi.org/10.1021/es061491b.
Perkowski J., Szadkowska-Nicze M., Bzdon S. & Łada E., 2008. Fotochemiczny rozkład dodecylobenzenosulfonianu sodu w roztworach wodnych [Photochemical decomposition of sodium dodecylbenzenesulfonate in aqueous solutions]. Prace Instytutu Elektrotechniki, 234, 5–22.
PN-EN 25813:1997. Jakość wody – Oznaczenie tlenu rozpuszczonego – Metoda jodometryczna. Polski Komitet Normalizacyjny, Warszawa.
Rozporządzenie Ministra Środowiska z dnia 27 listopada 2002 r. w sprawie wymagań, jakim powinny odpowiadać wody powierzchniowe wykorzystywane do zaopatrzenia ludności w wodę przeznaczoną do spożycia. Dz.U. 2002 nr 204 poz. 1728.
Šiljić A., Antanasijević D., Perić-Grujić A., Ristić M. & Pocajt V., 2015. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations. Environmental Science and Pollution Research, 22(6), 4230–4241. https://doi.org/10.1007/s11356-014-3669-y.
Styszko K. & Drobniak A., 2015. Badania możliwości adsorpcji wybranych ksenobiotyków z roztworów wodnych na popiele lotnym. Ochrona Środowiska, 37(1), 25–31.
Taylor D. & Senac T., 2014. Human pharmaceutical products in the environment – The “problem” in perspective. Chemosphere, 115(November), 95–99. https://doi.org/10.1016/j.chemosphere.2014.01.011.
Tunç S., Gürkan T. & Duman O., 2012. On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chemical Engineering Journal, 181–182, 431–442. https://doi.org/10.1016/j.cej.2011.11.109.
Urząd Miasta Krakowa (UMK), 2019. Raport o stanie Miasta 2018. Kraków.
Vilhunen S., Vilve M., Vepsäläinen M. & Sillanpää M., 2010. Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method. Journal of Hazardous Materials, 179(1–3), 776–782. https://doi.org/10.1016/j.jhazmat.2010.03.070.
Wang L., Zhang, Q., Chen B., Bu Y., Chen Y., Ma J. & Rosario-Ortiz F.L., 2020. Photolysis and photocatalysis of haloacetic acids in water: A review of kinetics, influencing factors, products, pathways, and mechanisms. Journal of Hazardous Materials, 391(December 2019), 122143. https://doi.org/10.1016/j.jhazmat.2020.122143.
Xia X., Li G., Yang Z., Chen Y. & Huang G. H., 2009. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen. Environmental Pollution, 157(4), 1352–1359. https://doi.org/10.1016/j.envpol.2008.11.039.
Żuk B. (red.), Czarnecka L., Dębska B., Fiszer P., Gołębiowska K., Gondek E., Główka A. et al., 2017. Raport o stanie środowiska w województwie małopolskim w 2017 roku. Wojewódzki Inspektorat Ochrony Środowiska w Krakowie, Kraków.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)