Salt tectonics in front of the Outer Carpathian thrust wedge in the Wieliczka area (S Poland) and its exposure in the underground salt mine

Authors

  • Stanisław Burliga University of Wroclaw, Institute of Geological Sciences
  • Piotr Krzywiec Polish Academy of Science, Institute of Geological Sciences
  • Krzysztof Dąbroś Kopalnia Soli "Wieliczka" S.A.
  • Jerzy Przybyło Kopalnia Soli "Wieliczka" S.A.
  • Elżbieta Włodarczyk Kopalnia Soli "Wieliczka" S.A.
  • Michał Źróbek Kopalnia Soli "Wieliczka" S.A.
  • Michał Słotwiński University of Wroclaw, Institute of Geological Sciences

DOI:

https://doi.org/10.7494/geol.2018.44.1.71

Keywords:

Carpathian Foredeep, Miocene, salt tectonics, Wieliczka Salt Deposit

Abstract

Salt deposits in the Wieliczka area (Wieliczka Salt Deposit – WSD) in southern Poland comprise salt-rich strata belonging to an evaporite succession that originated in the Carpathian Foredeep basin in the Middle Miocene Badenian (Serravallian) times, ca 13.81–13.45 Ma. Although they have been mined since the 13th century and decades of investigations provided abundant data on their origin and structure, some aspects of their geological evolution are still not fully understood. This study presents current concepts on the lithostratigraphy and tectonics of the WSD. The salt-bearing facies developed near to the southern basin margin, delineated by the Carpathian orogenic front. Such a location triggered the redeposition of sediments and gravity-driven deformation followed by tectonic deformation related to the forelandward advancement of the Carpathian thrusts. As a result, the WSD consists of folds and slices composed of two main salt members: (1) the stratified salt member, with intercalating salt, sulphates and siliciclastics, and (2) the boulder salt member, built of clays with large, isolated blocks of salt. The stratified member contains abundant meso-scale tectonic structures recording the soft-sediment deformation and deformation related to the northward tectonic push exerted by the advancing Carpathian thrust wedge. The boulder member originated due to the syntectonic erosion of evaporites along the basin margins and their redeposition during progressive northward migration of the Carpathian front. Recent interpretations of seismic data imply that the WSD constitutes the core of a triangle zone developed at the contact of the Carpathian orogenic wedge with the backthrust-displaced foredeep sedimentary fill. Meso-scale examples of sedimentary and tectonic structures in the salt-bearing succession exposed in the underground Wieliczka Salt Mine are described and their formation modes discussed.

Downloads

Download data is not yet available.

References

Alexandrowicz S., Garlicki A. & Rutkowski J., 1982. Podstawowe jednostki litostratygraficzne miocenu zapadliska przedkarpackiego. Kwartalnik Geologiczny, 26, 470–471.

Bahroudi A. & Koyi H.A., 2004. Tectono-sedimentary framework of the Gachsaran formation in the Zagros Foreland basin. Marine and Petroleum Geology, 21, 1295–1310.

Bąbel M., 2007. Depositional environments of a salina-type evaporite basin recorded in the Badenian gypsum facies in the northern Carpathian Foredeep. [in:] Schreiber B.C., Lugli S. & Bąbel M. (eds.), Evaporites Through Space and Time, Geological Society Special Publications, 285, Geological Society, London, 107–142.

Bąbel M. & Bogucki A., 2007. The Badenian evaporite basin of the northern Carpathian Foredeep as a model of a meromictic selenite basin. [in:] Schreiber B.C., Lugli S & Bąbel M. (eds.), Evaporites Through Space and Time, Geological Society Special Publications, 285, Geological Society, London, 219–246.

Bojar A-V, Barbu V., Wojtowicz A., Bojar H-P, Hałas S. & Duliu O.G., 2018. Miocene Slănic Tuff, Eastern Carpathians, Romania, in the Context of Badenian Salinity Crisis. Geosciences, 8, 73, 1–13. DOI:10.3390/geosciences8020073.

Bukowski K., 2011. Badeńska sedymentacja salinarna na obszarze między Rybnikiem a Dębicą w świetle badań geochemicznych, izotopowych i radiometrycznych. Rozprawy Monografie, 236, Wydawnictwa AGH, Kraków.

Bukowski K., de Leeuw A., Gonera M., Kuiper K.F., Krzywiec P. & Peryt D., 2010. Badenian tuffite levels within the Carpathian orogenic front (Gdów-Bochnia area, Southern Poland): radio-isotopic dating and stratigraphic position. Geological Quarterly, 54, 4, 449–464.

Burliga S., Koyi H.A. & Krzywiec P., 2012. Modelling cover deformation and decoupling during inversion, using the Mid-Polish Trough as a case study. Journal of Structural Geology, 42, 62–73. DOI: 10.1016/j.jsg.2012.06.013

Carrillo E., Koyi H.A. & Nilfouroushan F., 2017. Structural significance of an evaporite formation with lateral stratigraphic heterogeneities (South-eastern Pyrenean Basin, NE Spain). Marine and Petroleum Geology, 86, 1310–1326.

Callot J.-P., Trocmé V., Letouzey J., Albouy E., Jahani S. & Sherkati S., 2012. Pre-existing salt structures and the folding of the Zagros Mountains. [in:] Alsop G.I., Archer S.G., Hartley A.J., Grant N.T. & Hodgkinson R (eds.), Salt Tectonics, Sediments and Prospectivity, Geological Society Special Publications, 363, Geological Society, London, 545–561.

Cartwright J., Jackson M., Dooley T. & Higgins S., 2012. Strain partitioning in gravity-driven shortening of a thick, multilayered evaporite sequence. [in:] Alsop G.I., Archer S.G., Hartley A.J., Grant N.T. & Hodgkinson R. (eds.), Salt Tectonics, Sediments and Prospectivity, Geological Society Special Publications, 363, Geological Society, London, 449–470.

Cobbold P.R., Szatmari P., Demercian L.S., Coelho D. & Rossello E.A., 1995. Seismic and experimental evidence for thin-skinned horizontal shortening by convergent radial gliding on evaporites, deep-water Santos Basin, Brazil. [in:] Jackson M.P.A., Roberts D.G. & Snelson S. (eds.), Salt Tectonics: A Global Perspective, American Association of Petroleum Geologists Memoir, 65, AAPG, 305–321.

Cotton J.T. & Koyi H.A., 2000. Modeling of thrust fronts above ductile and frictional detachments: Application to structures in the Salt Range and Potwar Plateau, Pakistan. Geological Society of America Bulletin, 112, 3, 351–363.

Cyran K., 2008. Tektonika mioceńskich złóż soli w Polsce. Archiwum Wydziału Geologii Geofizyki i Ochrony Środowiska, AGH, Kraków [Ph.D. thesis] Davis D. & Engelder T., 1985, The role of salt in fold-and-thrust belts. Tectonophysics, 119, 67–88.

Feldens P., Mitchell N.C., 2015. Salt Flows in the Central Red Sea. [in:] Rasul N.M.A. & Stewart I.C.F. (eds.), The Red Sea, Springer Earth System Sciences, Springer-Verlag, Berlin – Heidelberg, 205–218. DOI: 10.1007/978-3-66245201-1_12.

Garlicki A., 1968. Autochtoniczna seria solna w miocenie Podkarpacia między Skawiną a Tarnowem. Biuletyn Instytutu Geologicznego, 215, 5–77.

Garlicki A., 1979. Sedymentacja soli mioceńskich w Polsce. Prace Geologiczne – Polska Akademia Nauk. Oddział w Krakowie. Komisja Nauk Geologicznych, 119, Zakład Narodowy im. Ossolińskich, Wrocław – Kraków.

Garlicki A., 1994. Formalne jednostki litostratygraficzne miocenu – formacja z Wieliczki (fm). Przegląd Geologiczny, 42, 1, 26–28.

Garlicki A., 2008. Salt mines at Bochnia and Wieliczka. Przegląd Geologiczny, 56, 8/1, 663–669.

Gaweł A., 1962. Budowa geologiczna złoża solnego Wieliczki. [in:] Czaplicka J. et al. (red.), Czterdzieści lat Instytutu Geologicznego 1919–1959. Cz. 3, Prace – Instytut Geologiczny, 30, Wydawnictwa Geologiczne, Warszawa, 305–331.

Głuszyński A., 2014. Budowa geologiczna strefy brzeżnej Karpat i zapadliska przedkarpackiego w rejonie Tarnowa–Pilzna. Archiwum Wydziału Nauk o Ziemi i Kształtowania Środowiska, University of Wrocław [Ph.D. thesis].

Głuszyński A. & Aleksandrowski P., 2014 Alongstrike changing structure of the Carpathian thrust front east of Tarnów (SE Poland) as intersection phenomenon related to thrust-floor palaeotopography. Geologia Sudetica, 42, 19–20.

Głuszyński A. & Aleksandrowski P., 2015. Structural evolution of Carpathian thrust front east of Tarnów (SE Poland). [in:] CETEG 2015: 13th Meeting of the Central European Tectonic Groups & 20th Meeting of the Czech Tectonic Studies Group (ČTS): Kadaň, 22–25 April 2015, Czech Republic: Abstract Volume, Czech Geological Survey, 20, [on-line:] http://petrol.natur.cuni.cz/ceteg/sites/default/files/images/pdf/abstract-volume-CETEG2015_online.pdf.

Głuszyński A. & Aleksandrowski P., 2016. A deep palaeovalley in the floor of Polish Carpathian Foredeep Basin near Pilzno and its control on Badenian (Middle Miocene) evaporite facies. Geological Quarterly, 60, 2, 493–516. DOI: http://dx.doi.org/10.7306/gq.1297.

Hrdina L.E., 1842. Geschichte der Wieliczkaer Saline. C. Gerold, Wien.

Hudec M.R. & Jackson M.P.A., 2006. Advance of allochthonous salt sheets in passive margins and orogens. American Association of Petroleum Geologists Bulletin, 90, 1535–1564.

Jodłowski A., 1988. Ogólna charakterystyka stanu badań, źródeł i opracowań. [in:] Jodłowski A. (red.). Dzieje żup krakowskich, Wydawnictwo Muzeum Żup Krakowskich, Wieliczka, 9–15.

Jones P., 1997. The Carpathians of the southern Poland: thrust tectonics or wedge tectonics? [in:] 1997 AAPG International Conference and Exhibition 7–10 September, Vienna, Abstracts, 27–28.

Kolasa K. & Ślączka A., 1985. Sedimentary salt megabreccias exposed in the Wieliczka mine, Fore-Carpathian Depression. Acta Geologica Polonica, 35, 3–4, 221–230.

Kotlarczyk J., 1985. An outline of the stratigraphy of marginal tectonic units of the Carpathian orogen in the Rzeszów–Przemyśl area. [in:] Kotlarczyk J. (ed.), Carpatho-Balkan Geological Association XIII Congress: Cracow, Poland, 1985. [4], Geotraverse Kraków – Baranów – Rzeszów – Przemyśl – Ustrzyki Dolne – Komańcza – Dukla: guide to excursion 4, Wydawnictwa Geologiczne, Warszawa, 39–64.

Krzywiec P., Aleksandrowski P., Florek R. & Siupik J., 2004. Budowa frontalnej strefy Karpat zewnętrznych na przykładzie mioceńskiej jednostki Zgłobic w rejonie Brzeska–Wojnicza – nowe dane, nowe modele, nowe pytania. Przegląd Geologiczny, 52, 1051–1059.

Krzywiec P., Bukowski K., Oszczypko N. & Garlicki A., 2012. Structure and Miocene evolution of the Gdów tectonic “embayment” (Polish Carpathian Foredeep) – new model based on reinterpreted seismic data. Geological Quarterly, 56, 4, 907–920. DOI: http://dx.doi org/10.7306/gq.1067.

Krzywiec P., Oszczypko N., Bukowski K., Oszczypko-Clowes M., Śmigielski M., Stuart F.M., Persano C. & Sinclair H.D., 2014. Structure and evolution of the Carpathian thrust front between Tarnów and Pilzno (Pogórska Wola area, southern Poland) – results of integrated analysis of seismic and borehole data. Geological Quarterly, 58, 3, 399–416. DOI: 10.7306/gq.1189.

Krzywiec P., Vergés J., 2007. Role of the foredeep evaporites in wedge tectonics and formation of triangle zones: Comparison of the Carpathian and Pyrenean Thrust Fronts. [in:] Lacombe O., Lavé J., Roure F. & Vergés J. (eds.), Thrust Belts and Foreland Basins – From Fold Kinematics to Petroleum Systems, New Frontiers in Earth Sciences, Springer-Verlag, Berlin – Heidelberg, 383–394.

Kuc W., 2016. Złoża soli w Polsce w ujęciu przeglądowym Studia i Materiały do Dziejów Żup Solnych w Polsce, 31, 151–208.

de Leeuw A., Bukowski K., Krijgsman W. & Kuiper K.F., 2010. Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology, 38, 8, 715–718.

de Leeuw A., Filipescu S., Maţenco L., Krijgsman W., Kuiper K.F. & Stoica M., 2013. Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): Implications for Central Paratethys stratigraphy and emplacement of the Tisza–Dacia plate. Global and Planetary Change, 103, 82–98. DOI: 10.1016/j.gloplacha.2012.04.008.

Lillie R.J., Johnson G.D.,Yousuf M.H., Zami A.S. & Yeats R.S., 1987. Structural development within the Himalayan foreland fold-and-thrust belt of Pakistan. [in:] Beaumont C. & Tankard A.J. (eds.), Sedimentary Basins and Basin Forming Mechanisms, Canadian Society of Petroleum Geologists Memoir, 12, Atlantic Geoscience Society, 379–392.

Machaniec E. & Zapałowicz-Bilan B., 2005. Micropalaeontological analysis of olistoliths from the Wieliczka Salt Mine (Outer Carpathians, Poland). Studia Geologica Polonica, 124, 273–283.

Morley C.K. & Guerin G., 1996. Comparison of gravity-driven deformation styles and behavior associated with mobile shales and salt. Tectonics, 15, 1154–1170.

Niedźwiedzki J., 1883. Stosunki geologiczne formacyi solonośnej Wieliczki i Bochni. 1, Spostrzeżenia w naziomie całego obszaru i w kopalni bocheńskiej. Polskie Towarzystwo Przyrodników im. Kopernika, Lwów.

Niedźwiedzki J., 1884. Stosunki geologiczne formacyi solonośnej Wieliczki i Bochni. 2, Utwór solny w Wieliczce. Polskie Towarzystwo Przyrodników im. Kopernika, Lwów.

d’Obyrn K. & Przybyło J., 2010. Rozpoznanie geologiczne złoża soli kamiennej „Wieliczka” do 1945 roku. Przegląd Górniczy, 66, 3–4, 110–121.

Oszczypko N., 1997. The Early-Middle Miocene Carpathian peripheral foreland basin (Western Carpathians, Poland). Przegląd Geologiczny, 45, 10/2, 1054–1063.

Oszczypko N., 1998. The Western Carpathian foredeep – development of the foreland basin in front of the accretionary wedge and its burial history (Poland). Geologica Carpathica, 49, 1–18.

Oszczypko N., Krzywiec P., Popadyuk I. & Peryt T., 2006. Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution [in:] Golonka J. & Picha F.J. (eds.), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, American Association of Petroleum Geologists Memoir, 84, AAPG, 293–350. DOI: 10.1306/985612M843072.

Pettijohn F.J., 1975. Sedimentary Rocks. Harper and Row, New York.

Poborski J. & Skoczylas-Ciszewska K., 1963. O miocenie w strefie nasunięcia karpackiego w okolicy Wieliczki i Bochni. Annales Societatis Geologorum Poloniae, 33, 3, 339–348.

Połtowicz S., 1977. Uwagi o rozwoju tektonicznym złóż soli kamiennej w Wieliczce i Baryczu. Annales Societatis Geologorum Poloniae, 47, 2, 279–299.

Porębski S. & Oszczypko N., 1999. Litofacje i geneza piasków bogucickich (górny baden), zapadlisko przedkarpackie. Prace Państwowego Instytutu Geologicznego, 168, 57–82.

Puigdefàbregas C., Muñoz J.A. & Vergés J., 1992. Thrusting and foreland basin evolution in the Southern Pyrenees [in:] McClay K.R. (ed.), Thrust Tectonics, Chapman and Hall, London, 247–254.

Rowan M.G., Peel F.J. & Vendeville B.C., 2004. Gravity-driven fold belts on passive margins. American Association of Petroleum Geologists Memoir, 82, AAPG, 157–182.

Rowan M.G., Peel F.J., Vendeville B.C. & Gaullier V., 2012. Salt tectonics at passive margins: Geology versus models – Discussion. Marine and Petroleum Geology, 37, 184–194.

Sans M. & Vergés J., 1995, Fold development related to contractional salt tectonics: Southeastern Pyrenean thrust front, Spain. [in:] Jackson M.P.A., Roberts D.G. & Snelson S. (eds.), Salt Tectonics: A Global Perspective, American Association of Petroleum Geologists Memoir, 65, AAPG, 369–378.

Sieniawska I., Aleksandrowski P., Rauch M.A. & Koyi H., 2010. Control of synorogenic sedimentation on back and out-of-sequence thrusting: insights from analog modeling of an orogenic front (Outer Carpathians, southern Poland). Tectonics, 29 (TC6012), 1–29. DOI: 10.1029/2009TC002623.

Ślączka A. & Kolasa K., 1997. Resedimented salt in the Northern Carpathians Foredeep (Wieliczka, Poland). Slovak Geological Magazine, 3, 135–155.

Śliwiński M., Bąbel M., Nejbert K., Olszeska-Nejbert D., Gąsiewicz A., Schreiber B.C., Benowitz J.A. & Layer P., 2012. Badenian-Sarmatian chronostratigraphy in the Polish Carpathian Foredeep. Palaeogeography Palaeoclimatology Palaeoecology, 326–328, 12–29.

Talbot C.J. & Jarvis R.J., 1984. Age, budget and dynamics of an active salt extrusion in Iran. Journal of Structural Geology, 6, 521–533.

Talbot C.J., Medvedev S., Alavi M., Shahrivar H. & Heidari E., 2000. Salt extrusion rates at Kuh-e-Jahani, Iran: June 1994 to November 1997. [in:] Vendeville B.C., Mart Y. & Vigneresse J.L. (eds.), Salt, Shale, and Igneous Diapirs in and Around Europe, Geological Society Special Publications, 174, Geological Society, London, 93–11.

Tarka R., 1992. Tektonika wybranych złóż soli w Polsce na podstawie badań mezostrukturalnych. Prace Państwowego Instytutu Geologicznego 137, PIG, Warszawa Tołwiński K., 1956, Główne elementy tektoniczne Karpat z uwzględnieniem górotworu Salidów. Acta Geologica Polonica, 4, 2, 75–226.

Urai J.L., Schléder Z., Spiers C.J. & Kukla P.A., 2008. Flow and transport properties of saltrocks. [in:] Littke R., Bayer U., Gajewski D. & Nelskamp S. (eds.), Dynamics of Complex Intracontinental Basins: The Central European Basin System, Springer-Verlag, Berlin – Heidelberg, 277–290.

Vergés J., Millán H., Roca E., Muñoz J.A., Marzo M., Cirés J., Den Bezemer T., Zoetmeijer R. & Cloetingh S., 1995.Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal scale cross-section. Marine and Petroleum Geology, 12, 893–915.

Wagner R., Bukowski K. & Przybyło J., 2008. Petrographic character of coal substance from salt sediments in the Wieliczka mine. Mineral Resources Management, 24, 225–240.

Weimer P. & Buffler R.T., 1992, Structural geology and evolution of the Mississippi fan foldbelt, deep Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 76, 225–251.

Wiewiórka J., 1988. Warunki geologiczne eksploatacji soli w żupach krakowskich. [in:] Jodłowski A., Wiewiórka J., Piotrowicz J., Keckowa A., Dziwik K. & Wyrozumski J., Dzieje żup krakowskich, Muzeum Żup Krakowskich, Wieliczka, 37–70.

Wysocka A., Radwański A., Górka M., Bąbel M., Radwańska U. & Złotnik M., 2016. The Middle Miocene of the Fore-Carpathian Basin (Poland, Ukraine and Moldova). Acta Geologica Polonica, 66, 3, 351–401.

Zejszner L., 1844. Krótki opis geologiczny i górniczy Wieliczki. B. Behr, Berlin.

Żelaźniewicz A., Aleksandrowski P., Buła Z., Karnkowski P.H., Konon A., Ślączka A., Żaba J. & Żytko K., 2011. Regionalizacja tektoniczna Polski. Komitet Nauk Geologicznych PAN, Wrocław.

Downloads

Published

2018-04-14

Issue

Section

Articles

How to Cite

Salt tectonics in front of the Outer Carpathian thrust wedge in the Wieliczka area (S Poland) and its exposure in the underground salt mine. (2018). Geology, Geophysics and Environment, 44(1), 71. https://doi.org/10.7494/geol.2018.44.1.71