Arsenic in water from the Bystre Thrust-Sheet (Outer Carpathians, Poland): Geological and environmental implications
DOI:
https://doi.org/10.7494/geol.2024.50.4.421Keywords:
Polish Outer Carpathians, the Bystre Thrust-Sheet, arsenic, watercourses, geochemical anomalies, geological structureAbstract
The article focuses on the physicochemical parameters of water in streams, springs, boreholes, and intakes from the Bystre Thrust-Sheet (the Silesian Nappe, Fore-Dukla Zone), the only area in the Polish segment of the Outer Carpathians where arsenic minerals occur. These waters are characterized by the presence of arsenic, lithium, mercury, barium, strontium and usually high CO2 concentrations. The study aimed to determine the range of the geochemical anomaly of arsenic in water. An important aspect was to determine the origin of As and link its presence with the content of ions of other chemical elements dissolved in water. The sampling points were designated based on geological maps with a particular emphasis on the occurrence of tectonic dislocations and the configuration of the river network. In the selected places 47 samples of water were taken, and various elements were determined. Then, the range of occurrence of various types of water that differed from the average concentrations of selected ions was analysed. The potential relationship between the chemical composition of water and the geology of the Bystre Thrust-Sheet was also discussed. The high concentrations of arsenic were found only in springs and boreholes. In flowing waters, these concentrations quickly decreased due to dilution or precipitation and binding with the solid phase. Relatively high (max. 378.72 μg/L) arsenic concentration, which significantly exceeded the permissible value (50 μg/L), was detected in the Bystre 1 borehole. This water has a pH value of 7.85 indicating its alkaline nature. When considering water use for health purposes, it is necessary to monitor its arsenic content. The conditions prevailing in waters, mainly high pH, favour the immobilization of metals in sediments and suspended matter. The lower concentrations of arsenic in flowing waters may be attributed to the strongly calcareous nature of the Cieszyn beds which act as a natural barrier, limiting the migration of arsenic beyond the Bystre Thrust-Sheet.
Downloads
References
Alekin O.A., 1970. Osnovy gidrokhimii (Principles of Hydrochemistry). Gidrometeorologicheskoye Izdatel’stvo, Leningrad [Алекин O.A., 1970. Основы гидрохимии. Гидрометеорологическое Издательство, Ленинград].
Aleksander-Kwaterczak U. & Plenzler D., 2019. Contamination of small urban watercourses on the example of a stream in Krakow (Poland). Environmental Earth Sciences, 78, 530. https://doi.org/10.1007/s12665-019-8509-4.
Argos M., Kalra T., Rathouz P.J., Chen Y., Pierce B., Parvez F., Islam T., Ahmed A., Rakibuz-Zaman M., Hasan R., Sarwar G., Slavkovich V., van Geen A., Graziano J. & Ahsan H., 2010. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. The Lancet, 376(9737), 252–258. https://doi.org/10.1016/S0140-6736(10)60481-3.
Assis I.R., Dias L.E., Ribeiro E.S. Jr., Abrahão W.A.P., Vargas de Mello J.W. & Veloso R.W., 2012. Induction of a geochemical barrier for As, Fe and S immobilization in a sulfide substrate. Revista Brasileira de Ciência do Solo, 32, 671–679. https://doi.org/10.1590/S0100-06832012000200036.
Bartram J. & Balance R. (eds.), 1996. Water quality monitoring – a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. UNEP/WHO.
Bhattacharjee P., Chatterjee D., Singh K.K. & Giri A.K., 2013. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: An overview. International Journal of Hygiene and Environmental Health, 216(5), 574–586. https://doi.org/10.1016/j.ijheh.2012.12.008.
Bissen M. & Frimmel F.H., 2003. Arsenic – a review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica, 31(1), 9–18. https://doi.org/10.1002/aheh.200390025.
Bojakowska I. & Borucki J., 1992. Anomalie arsenowe koło Baligrodu i Nowego Łupkowa (Karpaty). Kwartalnik Geologiczny, 36(4), 469–480.
Borek L., 2024. The impact of the geographical environment on the hydromorphological conditions of watercourses in southern Poland. Geology, Geophysics and Environment, 50(1), 93–112. https://doi.org/10.7494/geol.2024.50.1.93.
Bowell R., Alpers Ch., Jamieson H., Nordstrom D.K. & Majzlan J., 2014. The environmental geochemistry of arsenic: An overview. [in:] Bowell R., Alpers C., Jamieson H., Nordstrom K. & Majzlan J. (eds.), Arsenic: Environmental Geochemistry, Mineralogy and Microbiology. De Gruyter, Berlin–Boston, 1–16. https://doi.org/10.1515/9781614517979.1.
Boyd C.E., 2015. Water Quality: An Introduction. Springer Cham. https://doi.org/10.1007/978-3-319-17446-4.
Campbell K.M. & Nordstrom D.K., 2014. Arsenic speciation and sorption in natural environments. [in:] Bowell R., Alpers C., Jamieson H., Nordstrom K. & Majzlan J. (eds.), Arsenic: Environmental Geochemistry, Mineralogy and Microbiology. De Gruyter, Berlin–Boston, 185–216. https://doi.org/10.2138/rmg.2014.79.3.
Ciszewski D. & Aleksander-Kwaterczak U., 2020. Metal mobility in a mine-affected floodplain. Minerals, 10(9), 814. https://doi.org/10.3390/min10090814.
Chaudhary M.M., Hussain S., Du C., Conway B.R. & Ghori M.U., 2024. Arsenic in water: understanding the chemistry, health implications, quantification and removal strategies. ChemEngineering, 8(4), 78. https://doi.org/10.3390/chemengineering8040078.
Chung J.Y., Yu S.-D. & Hong Y.S., 2014. Environmental source of arsenic exposure. Journal of Preventive Medicine and Public Health, 47(5), 253–257. https://doi.org/10.3961/jpmph.14.036.
Cullen W.R. & Reimer K.J., 1989. Arsenic speciation in the environment. Chemical Reviews, 89, 713–764. https://doi.org/10.1021/cr00094a002.
De A. & Roy N., 2023. Consequences of arsenic in the environment. [in:] Huq S.M.I. (ed.), Arsenic in the Environment – Sources, Impacts and Remedies. IntechOpen. http://doi.org/10.5772/intechopen.1001476.
Drahota P., Mikutta C., Falteisek L., Duchoslav V. & Klementová M., 2017. Biologically induced formation of realgar deposits in soil. Geochimica et Cosmochimica Acta, 218, 237–256. https://doi.org/10.1016/j.gca.2017.09.023.
Fatoki J.O. & Badmus J.A., 2022. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. Journal of Hazardous Materials Advances, 5, 100052. https://doi.org/10.1016/j.hazadv.2022.100052.
Frohne T., Rinklebe J., Diaz-Bone R.A. & Du Laing G., 2011. Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma, 160(3–4), 414–424.
Guven D.E. & Akinci G., 2013. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. Journal of Environmental Sciences, 25(9), 1784–1794. https://doi.org/10.1016/S1001-0742(12)60198-3.
Hall A.H., 2002. Chronic arsenic poisoning. Toxicology Letters, 128(1–3), 69–72. https://doi.org/10.1016/S0378-4274 (01)00534-3.
Hiller E., Lalinská B., Chovan M., Jurkovič L., Klimko T., Jankulár M., Hovorič R., Šottník P., Fľaková R., Ženišová Z. & Ondrejková I. 2012. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Applied Geochemistry, 27(3), 598–614. https://doi.org/10.1016/j.apgeochem.2011.12.005.
Hubaux R., Becker-Santos D.D., Enfield K.S., Lam S., Lam W.L. & Martinez V.D., 2012. Arsenic, asbestos and radon: emerg-ing players in lung tumorigenesis. Environmental Health, 11, 89. https://doi.org/10.1186/1476-069X-11-89.
Jankowski L., 2015. Nowe spojrzenie na budowę geologiczną Karpat: ujęcie dyskusyjne. Instytut Nafty i Gazu – Państwowy Instytut Badawczy, Kraków.
Jankowski L. & Jarmołowicz-Szulc K., 2009. Particular tectonic zones (the mélange zones) as potential and significant paths for fluid migration and mineral formation. Mineralogical Review, 59(1), 31–44.
Jankowski L. & Ślączka A., 2000. Szczegółowa mapa geologiczna Polski w skali 1:50 000: arkusz Jabłonki. Ministerstwo Śro-dowiska, Warszawa.
Jankowski L. & Ślączka A., 2014. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50 000: arkusz Jabłonki. Państwowy Instytut Geologiczny – Ministerstwo Środowiska, Warszawa.
Jarmołowicz-Szulc K. & Jankowski L., 2021. Interpretation of mineralization in the Western Carpathians (Polish segment) – A tectonic mélange approach. Minerals, 11(11), 1171. https://doi.org/10.3390/min11111171.
Jarmołowicz-Szulc K., Karwowski Ł. & Marynowski L., 2012. Fluid circulation and formation of minerals and bitumen in the sedimentary rocks of the Outer Carpathians – based on studies on the quartz-calcite-organic matter association. Marine and Petroleum Geology, 32(1), 138–158. https://doi.org/10.1016/j.marpetgeo.2011.11.010.
Jarmołowicz-Szulc K., Kleczyński P., Kozłowski A., Gąsienica A. & Giro L., 2023. Przejawy mineralizacji w odniesieniu do procesów geotektonicznych w Karpatach fliszowych – nowe doniesienia. Przegląd Geologiczny, 71(4), 188–196. https://doi.org/10.7306/2023.13.
Jarmołowicz-Szulc K., Kleczyński P., Kozłowski A. & Gąsienica A., 2024. Genetic relationship of minerals to fluid circulation in the Polish Carpathians – the Bystre Slice case study. Geological Quarterly, 68(11), 1–16. https://doi.org/10.7306/gq.1740.
Kamieński M., 1937. O minerałach arsenowych z fliszu karpackiego okolicy Leska. Archiwum Mineralogiczne, 13, 1–8.
Kita-Badak M., 1970. W sprawie mineralizacji arsenowej w okolicy Baligrodu. Geological Quarterly, 15(1), 155–160.
Komorowicz I. & Barałkiewicz D., 2016. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland. Environmental Monitoring and Assessment, 188(9), 504. https://doi.org/10.1007/s10661-016-5477-y.
Kucharič Ľ., Bezák V., Kubeš P., Vozár J. & Konečný V., 2012. New magnetic anomalies of the Outer Carpathians in NE Slovakia and their relationship to the Carpathian Conductivity Zone. Geological Quarterly, 57, 123–134.
Litwin I., Lis P. & Maciaszczyk-Dziubińska E., 2009. Dwie twarze arsenu. Kosmos, 58(1–2), 187–198.
Lu P. & Zhu C., 2011. Arsenic Eh–pH diagrams at 25°C and 1 bar. Environmental Earth Sciences, 62, 1673–1683. https://doi.org/10.1007/s12665-010-0652-x.
Łach A. & Pasztyła G., 2013. Unikalne wody litowo-arsenowe w Rabe. LAB, 18(6), 6–10.
Malata T., Marciniec P. & Starkel L., 1997. Szczegółowa Mapa Geologiczna Polski 1:50 000: arkusz Lesko. Ministerstwo Śro-dowiska, Warszawa.
Mastella L., 1995. Mapa tektoniczna jednostki przeddukielskiej (między Roztokami Dolnymi a Ustrzykami Górnymi). Archiwum Instytutu Geologii Podstawowej, UW, Warszawa.
Moore J.N., Ficklin W.H. & Johns C., 1988. Partitioning of arsenic and metals in reducing sulfidic sediments. Environmental Science & Technology, 22(4), 432–437. https://doi.org/10.1021/es00169a011.
Newman D.K., Ahmann D. & Morel F.M.M., 1998. A brief review of microbial arsenate respiration. Geomicrobiology Journal, 15(4), 255–268. https://doi.org/10.1080/01490459809378082.
Nieć M., Lenik P. & Radwanek-Bąk B., 2016. Szkic metalogenii polskich Karpat – modele i możliwości występowania złóż rud. Biuletyn Państwowego Instytutu Geologicznego, 467, 9–40.
Organ M., 2021. “The boundary of the world” – the beginnings of tourism in the Bieszczady Mountains in the 19th century. Galicja: Studia i Materiały, 7, 107–138, https://doi.org/10.15584/galisim.2021.7.6.
Ostrowicki B., 1958. Nowe minerały kruszcowe w okolicy Baligrodu. Kwartalnik Geologiczny, 2(4), 644–653.
Oszczypko N., Ślączka A. & Żytko K., 2008. Regionalizacja tektoniczna Polski – Karpaty zewnętrzne i zapadlisko przedkar-packie. Przegląd Geologiczny, 56(10), 927–935.
Peng J.-f., Song Y.-h., Yuan P., Cui X.-y. & Qiu G.-l., 2009. The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161(2–3), 633–640. https://doi.org/10.1016/j.jhazmat.2008.04.061.
Peszat C., Bromowicz J. & Buczek-Pułka M., 1985. Perspektywy dokumentowania złóż i racjonalnego wykorzystania pia-skowców województwa krośnieńskiego. Zeszyty Naukowe AGH, Geologia, 11(4), 5–102.
PN-ISO 9297:1994. Jakość wody – Oznaczanie chlorków – Metoda miareczkowania azotanem srebra w obecności chromianu jako wskaźnika (Metoda Mohra).
PN-EN ISO 9963-1:2001. Jakość wody – Oznaczanie zasadowości – Część 1: Oznaczanie zasadowości ogólnej i zasadowości wobec fenoloftaleiny.
PN-EN ISO 17294-1:2007. Water quality – application of mass spectrometry with inductively coupled plasma (ICP-MS).
PN-EN ISO 11885:2009. Water quality – determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
PN-EN ISO 5667-3:2024. Water quality – Sampling – Part 3: Preservation and handling of water samples.
Rahman M.M., Naidu R. & Bhattacharya P., 2009. Arsenic contamination in groundwater in the Southeast Asia region. Environmental Geochemistry and Health, 31, 9–21. https://doi.org/10.1007/s10653-008-9233-2.
Rajchel L., 2012. Szczawy i wody kwasowęglowe Karpat polskich. Wydawnictwa AGH, Kraków.
Rajchel L., Rajchel J. & Wołowski K., 2002. Microorganisms in selected sulphuric springs of the Polish Carpathians. Geological Quarterly, 46(2), 189–198.
Ravenscroft P., Brammer H. & Richards K., 2009. Arsenic Pollution: A Global Synthesis. Wiley-Blackwell, Chichester.
Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału eko-logicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowi-skowych norm jakości dla substancji priorytetowych. Dz.U. 2021 poz. 1475 [Minister of Infrastructure regulation valid from 25 June 2021, on the classification of the ecological status, ecological potential and chemical status of surface water bodies, and environmental quality standards for priority substances. Journal of Laws of 2021 item 1475]. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210001475.
Rubinkiewicz J., 1998. Rozwój spękań ciosowych w płaszczowinie śląskiej w okolicach Baligrodu (Bieszczady Zachodnie – Karpaty zewnętrzne. Przegląd Geologiczny, 46(9/1), 820–826.
Rubinkiewicz J., 2007. Fold-thrust-belt geometry and detailed structural evolution of the Silesian nappe–eastern part of the Polish Outer Carpathians (Bieszczady Mts.). Acta Geologica Polonica, 57(4), 479–508.
Rybak B., 2000. Związek mineralizacji kruszcowej z tektoniką łuski Bystrego (Bieszczady, Karpaty zewnętrzne). Przegląd Geologiczny, 48(11), 1023–1029.
Sajdak M., Siwek J.P., Bojarczuk A. & Żelazny M., 2018. Hydrological and chemical water regime in the catchments of Bystra and Sucha Woda, in the Tatra National Park. Acta Scientiarum Polonorum: Formatio Circumiectus, 17(3), 161–173.
Shapiro S.S. & Wilk M.B., 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591.
Shomar B.H., Müller G. & Yahya A., 2005. Seasonal variations of chemical composition of water and bottom sediments in the wetland of Wadi Gaza, Gaza Strip. Wetlands Ecology and Management, 13(4), 419–431. https://doi.org/10.1007/s11273-004-0412-3.
Smedley P.L. & Kinniburgh D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5.
Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J. et al., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica, 91(2), 143–170. https://doi.org/10.7163/GPol.0115.
Spearman C., 1904. The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101. https://doi.org/10.2307/1412159.
Ślączka A., 1958. O pozycji okruszcowania w okolicy Baligrodu. Kwartalnik Geologiczny, 2(4), 637–643.
Świdziński H., 1958. Mapa geologiczna Karpat polskich: Część wschodnia. Instytut Geologiczny, Warszawa.
Uddin M.M., Harun-Ar-Rashid A.K.M., Hossain S.M., Hafiz M.A., Nahar K. & Mubin S.H., 2006. Slow arsenic poisoning of the contaminated groundwater users. International Journal of Environmental Science and Technology, 3(4), 447–453. https://doi.org/10.1007/BF03325954.
Veloso R.W., Vargas de Mello J.W., Abrahão W.A.P. & Glasauer S., 2019. Seasonal impacts on arsenic mobility and geochemistry in streams surrounding a gold mineralization area, Paracatu, Brazil. Applied Geochemistry, 109. https://doi.org/10.1016/j.apgeochem.2019.104390.
WHO (World Health Organization), 2022. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. https://iris.who.int/bitstream/handle/10665/352532/9789240045064-eng.pdf?sequence=1.
Wieser T., 1994. Pojurajskie przejawy mineralizacji a procesy geotektoniczne w Karpatach Fliszowych Polski i obszarów ościennych. Prace Specjalne Polskiego Towarzystwa Mineralogicznego, 5, 50–51.
Wojciechowski A., 2003. Wystąpienia rtęci i złota w rejonie Baligrodu oraz Szczawnicy (polska część Karpat). Przegląd Geolo-giczny, 51(2), 131–138.
Zhang C., Yu Z.-g., Zeng G.-m., Jiang M., Yang Z.-z., Cui F., Zhu M.-y., Shen L.-g., & Hu L., 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270–281. https://doi.org/10.1016/j.envint.2014.08.010.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)