Geothermal energy potential of Main Dolomite formation in SW Poland

Authors

DOI:

https://doi.org/10.7494/geol.2024.50.3.275

Keywords:

geothermal resources, geothermal system modelling, 3D geological modelling, machine learning

Abstract

This paper evaluates the geothermal potential of the Main Dolomite formation in an oil and gas field on the Fore-Sudetic Monocline (SW, Poland). The reservoir characterization included a well-logging interpretation and developed 3D petrophysical and temperature models that provided information on storage potential, transport properties, and temperature conditions in the analyzed carbonate formation. Geothermal energy potential was assessed using heat in place (HIP) and recoverable heat (Hrec) parameters for water and CO2 systems, considering a 50-year plant lifespan. Petrophysical and temperature data classify reservoirs using unsupervised machine learning, identifying zones with high and low geothermal potential, noting a strong limestone and dolomite dichotomy. Dolomite horizon shows more promising reservoir quality with mean porosity and permeability of 0.045 and 0.4 mD, respectively, however, its mean thickness reaches 11.58 m at maximum. The calculated Hrec for a 50-year lifetime of a geothermal system varies across dolomite horizon. In the most promising areas of NNW, WSW, and E parts, the values of Hrec are 8.19, 3.47, and 1.34 MW for water, respectively, and 0.69, 0.29, and 0.11 MW for CO2 as working fluids. Remarkably, the energy locked in the NNW zone constitutes nearly 21% of the total geothermal energy potential within the entire dolomite horizons of the study area. The geothermal resources for the most perspective location within the dolomite horizon were estimated at 12.99 and 1.09 MW levels, using water and CO2 as working fluids, respectively, assuming 50 years of the project’s lifetime.

Downloads

Download data is not yet available.

References

Archie G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(1), 55–62. https://doi.org/10.2118/942054-G.

Ahrens B., Lippert K. & Nehler M., 2022. Fluid flow properties of carbonate rocks under simulated in-situ conditions: Implications for geothermal reservoir quality [conference paper]. EGU General Assembly 2022, 23–27 May 2022, Vienna, Austria, EGU22-9858. https://doi.org/10.5194/egusphere-egu22-9858.

Bonto M., Welch M.J., Lüthje M., Andersen S.I., Veshareh M.J., Amour F., Afrough A., Mokhtari R., Hajiabadi M.R., Alizadeh M.R., Larsen C.N. & Nick H.M., 2021. Challenges and enablers for large-scale CO2 storage in chalk formations. Earth-Science Reviews, 222, 103826. https://doi.org/10.1016/j.earscirev.2021.103826.

Bujakowski W. & Tomaszewska B. (red.), 2014. Atlas wykorzystania wód termalnych do skojarzonej produkcji energii elektrycznej i cieplnej przy zastosowaniu układów binarnych w Polsce: monografia [Atlas of the Possible Use Geothermal Waters for Combined Production of Electricity and Heat Using Binary Systems in Poland: Monograph]. Instytut Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, Kraków.

CBDG (Central Geological Database), n.d. Polish Geological Institute – National Research Institute. https://baza.pgi.gov.pl/en [access: 27.03.2023].

Chomać-Pierzecka E., Sobczak A. & Soboń D., 2022. The potential and development of the geothermal energy market in Poland and the Baltic states – selected aspects. Energies, 15(11), 4142. https://doi.org/10.3390/en15114142.

Czekański E., Kwolek K. & Mikołajewski Z., 2010. Złoża węglowodorów w utworach cechsztyńskiego dolomitu głównego (Ca2) na bloku Gorzowa. Przegląd Geologiczny, 58(8), 695–703.

Esteves A.F., Santos F.M. & Magalhães Pires J.C., 2019. Carbon dioxide as geothermal working fluid: An overview. Renewable and Sustainable Energy Reviews, 114, 109331. https://doi.org/10.1016/j.rser.2019.109331.

Franco A. & Donatini F., 2017. Methods for the estimation of the energy stored in geothermal reservoirs. Journal of Physics: Conference Series [34th UIT Heat Transfer Conference 4–6 July 2016, Ferrata, Italy], 796, 012025. https://doi.org/10.1088/1742-6596/796/1/012025.

Górecki W. (red.), 2006. Atlas zasobów geotermalnych formacji paleozoicznej na Niżu Polskim [Atlas of Geothermal Resources of Paleozoic Formations in the Polish Lowlands]. Akademia Górniczo-Hutnicza im. S. Staszica, Kraków.

Górecki W., Sowiżdżał A., Hajto M. & Wachowicz-Pyzik A., 2015. Atlases of geothermal waters and energy resources in Poland. Environmental Earth Sciences, 74(12), 7487–7495.

GUS (Główny Urząd Statystyczny), 2023. Gospodarka paliwowo-energetyczna w latach 2021 i 2022 [Energy Statistics in 2021 and 2022]. Główny Urząd Statystyczny – Statistics Poland, Urząd Statystyczny w Rzeszowie – Statistical Office in Rzeszów, Warszawa – Rzeszów. https://stat.gov.pl/en/topics/environment-energy/energy/energy-statistics-in-2021-and-2022,4,18.html [access: 22.03.2023].

Hafiz I., Albesher Z., Kellogg J. & Saeid E., 2022. Detecting the fault and fracture systems by using 3D seismic attribute – Ant-tracking algorithm. [in:] SEG/AAPG IMAGE 2022: International Meeting for Applied Geoscience & Energy, 28 Aug – 1 Sep 2022, Houston, TX: Expanded Abstracts 2022 Technical Program, Society of Exploration Geophysicists, Houston, 1374–1379. https://doi.org/10.1190/image2022-3738405.1.

Hajto M., 2006. Wyniki kalkulacji zasobów geotermalnych na Niżu Polskim [Calculation results of geothermal resources in the Polish Lowlands]. [in:] Górecki W. (red.), Atlas zasobów geotermalnych formacji mezozoicznej na Niżu Polskim [Atlas of Geothermal Resources of Mesozoic Formations in the Polish Lowlands], Akademia Górniczo-Hutnicza im. Stanisława Staszica, Kraków, 183–197.

Hartlieb P., Toifl M., Kuchar F., Meisels R. & Antretter T., 2015. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Minerals Engineering, 91, 34–41. https://doi.org/10.1016/j.mineng.2015.11.008.

Huang Y., Pang Z., Kong Y. & Watanabe N., 2021. Assessment of the high-temperature aquifer thermal energy storage (HT-ATES) potential in naturally fractured geothermal reservoirs with a stochastic discrete fracture network model. Journal of Hydrology, 603(part D), 127188. https://doi.org/10.1016/j.jhydrol.2021.127188.

Huang Y., Yuanzhi Ch., Ren L., Tian F., Pan S., Wang K., Wang J., Dong Y., Kong Y., Parsa M., Puppala H., Melnik O., Huang Y. & Cheng Y., 2022. Assessing the Geothermal Resource Potential of an Active Oil Field by Integrating a 3D Geological Model with the Hydro-Thermal Coupled Simulation. Frontiers in Earth Science, 9, 787057. https://doi.org/10.3389/feart.2021.787057.

Jarzyna J., Bała M. & Zorski T., 1999. Metody geofizyki otworowej: pomiary i interpretacja. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.

Jaworowski K. & Mikołajewski Z., 2007. Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin. Przegląd Geologiczny, 55(12/1), 1017–1024.

Jolie E., Scott S., Faulds J., Chambefort I., Axelsson G., Gutiérrez-Negrín L.C., Regenspurg S., Ziegler M., Ayling, Richter B.A. & Zemedkun M.T., 2021. Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment, 2, 324–339. https://doi.org/10.1038/s43017-021-00154-y.

Kaminskaite I., Wang H., Liu Z. & Li H., 2021. Geothermal fluid flow in deep Carbonates and its impact on long-term reservoir performance: Natural systems [conference paper]. The 82nd EAGE Annual Conference & Exhibition, October 18–21, 2021, Amsterdam, The Netherlands. https://doi.org/10.3997/2214-4609.202112851.

Karayiannis N.B., 1996. Generalized fuzzy c-means algorithms. [in:] Proceedings of the fifth IEEE International Conference on Fuzzy Systems: FUZZ-IEEE ‘96; September 8-11, 1996, Hyatt Regency Hotel, New Orleans, Louisiana. Vol. 1, IEEE, 1036–1042. https://doi.org/10.1109/FUZZY.1996.552321.

Khasani, Itoi R., Tanaka T. & Fukuda M., 2004. A numerical study on the effects of initial water saturation of a geothermal reservoir on well characteristics. Memoirs of the Faculty of Engineering, Kyushu University, 64(1), 1–15.

Khasani, Kusmono, Pri U. & Rachmawan B., 2021. Corrosion in geothermal facilities: Their causes, effects, mitigation, and worldwide cases. AIP Conference Proceedings, 2338(1), 020007. https://doi.org/10.1063/5.0066755.

Kwolek K. & Mikołajewski Z., 2007. New stratigraphic scheme for Zechstein rocks in the Pogorzela High (Foresudetic Monocline) and its significance for hydrocarbon exploration. Przegląd Geologiczny, 55(12/1), 1037–1047.

Lei H., 2022. Performance comparison of H2O and CO2 as the working fluid in coupled wellbore/reservoir systems for geothermal heat extraction. Frontiers in Earth Science, 10, 819778. https://doi.org/10.3389/feart.2022.819778.

Li Y. & Sun J., 2016. 3D magnetization inversion using fuzzy c-means clustering with application to geology differentiation. Geophysics, 81(5), J61–J78. https://doi.org/10.1190/geo2015-0636.1.

Liu Y., Wang G., Yue G., Zhang W., Zhu X., & Zhang Q., 2019. Comparison of enhanced geothermal system with water and CO2 as working fluid: A case study in Zhacanggou, Northeastern Tibet, China. Energy Exploration and Exploitation, 37(2), 736–755. https://doi.org/10.1177/0144598718795492.

Mikołajewski Z. & Słowakiewicz M., 2008. Mikrofacje i diageneza utworów dolomitu głównego (Ca2) w rejonie bariery Międzychodu (Półwysep Grotowa, Polska Zachodnia). Biuletyn Państwowego Instytutu Geologicznego, 429, 91–97.

Moeck I.S., 2014. Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867–882. https://doi.org/10.1016/j.rser.2014.05.032.

Muffler P. & Cataldi R., 1977. Methods for regional assessment of geothermal resources. U.S. Geological Survey Open-File Report 77-870, U.S. Geological Survey, Denver, Colorado. https://doi.org/10.2172/6496850.

Nathenson M., 1975. Physical factors determining the fraction of stored energy recoverable from hydrothermal convection systems and conduction-dominated areas. U.S. Geological Survey Open-File Report 75-525, U.S. Geological Survey. Denver, Colorado. https://doi.org/10.3133/ofr75525.

Noga B., Biernat H., Kapuściński J., Martyka P., Nowak K. & Pijewski G., 2013. Perspektywy zwiększenia pozyskiwania ciepła geotermalnego w świetle nowych inwestycji zrealizowanych na terenie Niżu Polskiego. Technika Poszukiwań Geologicznych, Geotermia, Zrównoważony Rozwój, 52(2/2), 75–84.

Okoroafor E.R., Smith C.M., Ochie K.I., Nwosu C.J., Gudmundsdottir H. & Aljubran M., 2022. Machine learning in subsurface geothermal energy: Two decades in review. Geothermics, 102, 102401. https://doi.org/10.1016/j.geothermics.2022.102401.

Peryt T.M., 2010. Ewaporaty cechsztynu PZ1-PZ3 bloku Gorzowa. Przegląd Geologiczny, 58(8), 689–694.

Peryt T.M. & Dyjaczyński K., 1991. An isolated carbonate bank in the Zechstein Main Dolomite Basin, Western Poland. Journal of Petroleum Geology, 14(4), 445–458. https://doi.org/10.1111/j.1747-5457.1991.tb01036.x.

Peryt T.M. & Mikołajewski Z., 1997. Dokumentacja wynikowa z otworu Jarocin-8K [unpublished].

PIG-PIB (Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy), 2024. Geotermia [Geothermal Resources]. https://www.pgi.gov.pl/geotermia/przydatne/geotermia.html [access: 16.05.2024].

Pikulski L., 1997. Dokumentacja wynikowa odwiertu Jarocin-7. Mapa strukturalna górnej części formacji dolomitu głównego na obszarze złoża ropy naftowej “Jarocin” [unpublished].

Piris G., Herms I., Griera A., Colomer M., Arnó G. & Gomez‐Rivas E., 2021. 3DHIP‐Calculator – a new tool to stochastically assess deep geothermal potential using the Heat‐In‐Place method from voxel‐based 3D geological models. Energies, 14(21), 7338. https://doi.org/10.3390/en14217338.

Protas A. & Wojtkowiak Z., 2000. Blok Gorzowa: Geologia dolnego cechsztynu. [in:] Biernacka J. & Skoczylas J. (red.), Geologia i ochrona środowiska Wielkopolski: przewodnik LXXI Zjazdu Polskiego Towarzystwa Geologicznego, Bogucki Wydawnictwo Naukowe, Poznań, 163–171.

Pruess K., 2006. Enhanced geothermal systems (EGS) using CO2 as working fluid – A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 35(4), 351–367. https://doi.org/10.1016/j.geothermics.2006.08.002.

Ramalingam A. & Arumugam S., 2012. Experimental study on specific heat of hot brine for salt gradient solar pond application. International Journal of ChemTech Research, 4(3), 956–961.

Robertson E.C., 1988. Thermal properties of rocks. U.S. Geological Survey Open-File Report 88-441, U.S. Geological Survey, Denver, Colorado. https://doi.org/10.3133/ofr88441.

Sowiżdżał A., 2018. Geothermal energy resources in Poland – overview of the current state of knowledge. Renewable and Sustainable Energy Reviews, 82(3), 4020–4027. https://doi.org/10.1016/j.rser.2017.10.070.

Sowiżdżał A., Hajto M. & Górecki W., 2016. The most prospective areas for geothermal energy utilization for heating and power generation in Poland. [in:] EGC 2016: European Geothermal Congress 2016: Strasbourg, France, 19–24 September 2016, 1–7.

Sowiżdżał A., Starczewska M. & Papiernik B., 2022a. Future technology mix – Enhanced Geothermal System (EGS) and Carbon Capture, Utilization, and Storage (CCUS) – an overview of selected projects as an example for future investments in Poland. Energies, 15(10), 3505. https://doi.org/10.3390/en15103505.

Sowiżdżał A., Machowski G., Krzyżak A., Puskarczyk E., Krakowska-Madejska P. & Chmielowska A., 2022b. Petrophysical evaluation of the Lower Permian formation as a potential reservoir for CO2 – EGS – case study from NW Poland. Journal of Cleaner Production, 379(part 2), 134768. https://doi.org/10.1016/j.jclepro.2022.134768.

Syukri M., Saad R., Marwan, Tarmizi, Fadhli Z. & Safitri R., 2018. Volcanic hazard implication based on magnetic signatures study of Seulawah Agam geothermal system, Indonesia. Journal of Physics: Conference Series [The 8th International Conference on Theoretical and Applied Physics, 20–21 September 2018, Medan, Indonesia], 1120, 012028. https://doi.org/10.1088/1742-6596/1120/1/012028.

Tagliaferri M., Gładysz P., Ungar P., Strojny M., Talluri L., Fiaschi D., Manfrida G., Andresen T. & Sowiżdżał A., 2022. Techno-economic assessment of the supercritical carbon dioxide enhanced geothermal systems. Sustainability, 14(24), 16580. https://doi.org/10.3390/su142416580.

Topór T., Słota-Valim M. & Kudrewicz R., 2023. Assessing the geothermal potential of selected depleted oil and gas reservoirs based on geological modeling and machine learning tools. Energies, 16(13), 5211. https://doi.org/10.3390/en16135211.

Wachowicz-Pyzik A., Sowiżdżał A., Maćkowski T. & Stefaniuk M., 2024. A new approach to the development of geothermal water utilization in the context of identifying and meeting the social needs of local communities: A case study from the Mogilno–Łódź Trough, Central Poland. Sustainability, 16(1), 37. https://doi.org/10.3390/su16010037.

Wagner R., 1994. Stratygrafia i rozwój basenu cechsztyńskiego na Niżu Polskim. Prace Państwowego Instytutu Geologicznego, 146, PIG, Warszawa.

Wagner R., Dyjaczyński K., Papiernik B., Peryt T.M. & Protas A., 2000. Mapa paleogeograficzna dolomitu głównego (Ca2) w Polsce. [in:] Kotarba M.J. (red.), Bilans i potencjał węglowodorowy dolomitu głównego basenu permskiego Polski, Archiwum WGGiOŚ AGH, Kraków.

Zabihi M. & Akbarzadeh-T M.R., 2012. Generalized fuzzy c-means clustering with improved fuzzy partitions and shadowed sets. ISRN Artificial Intelligence, 2012, 92908.

Zawisza L. & Nowak J., 2012. Metodyka określania parametrów filtracyjnych skał na podstawie kompleksowej analizy danych geofizyki otworowej. Wydawnictwa AGH, Kraków.

Zych I., 2009. Ropo-gazonośność dolomitu głównego na tle modelu miąższościowo-litofacjalnego cechsztynu w południowo-zachodniej części Niżu Polskiego. Akademia Górniczo-Hutnicza im. Stanisława Staszica, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Surowców Energetycznych, Kraków [PhD thesis, unpublished].

Downloads

Published

2024-09-30

Issue

Section

Articles

How to Cite

Geothermal energy potential of Main Dolomite formation in SW Poland. (2024). Geology, Geophysics and Environment, 50(3), 275-293. https://doi.org/10.7494/geol.2024.50.3.275