Geomechanical modelling of Paleozoic Shale Gas Formation: a case study from the Baltic Basin, northern Poland

Małgorzata Słota-Valim, Krzysztof Sowiżdżał, Halina Jędrzejowska-Tyczkowska


The article presents the importance and position of geomechanical modelling workflow in reservoir characterization studies dedicated to unconventional shale reservoirs. We show the results of 3D geomechanical modelling carried out in an onshore area within the Baltic Basin, northern Poland, where the Silurian and Ordovician
shale formations are the exploration targets. The fundamental elements of the methodology, processes, and available datasets used in the modelling are discussed. The petrophysical, elastic, and mechanic properties of the rock were applied in the modelling process, along with the principal stresses and pore pressure in the geological formation. Moreover, the main calculation methods and data requirements for the Mechanical Earth Model construction are discussed. A comprehensive 3D geomechanical model was constructed, providing important information to engineers and decision makers which allows them to optimize well placement, the direction of the horizontal section of the borehole and the parameters of hydraulic fracturing treatment. The model can identify
zones of higher potential within the area of interest in terms of efficient stimulation treatment design.


Mechanical Earth Model, geomechanics, elastic properties, strength parameters, principal stresses

Full Text:



Akbar Ali A.H., Brown T., Delgado R., Lee D., Plumb D., Smirnov N., Marsden R., Prado-Velarde E., Ramsey L., Spooner D., Stone T. & Stouffer T., 2008. Watching Rocks Change – Mechanical Earth Modeling. Oilfield Review, 15, 2, 22–39.

Geological characteristics of the basin, 2012. [in:] Assessment of Shale Gas and Shale Oil resources of the Lower Paleozoic Baltic-Podlasie-Lublin Basin in Poland. First Report, Polish Geological Institute – National Research Institute, Warsaw, 9–15, [on-line:] [access: 21.05.2017].

Bjørlykke K., Høeg K. & Haque Mondol M., 2010. Introduction to Geomechanics: Stress and Strain in Sedimentary Basins. [in:] Bjørlykke K. (ed.), Petroleum Geoscience: From sedimentary Environments to Rock Physics, Springer, Heidelberg, 281–298.

Bruyelle J. & Guérillot D.R., 2014. An accurate volumetric calculation method for estimating original hydrocarbons in place for oil and gas shales including adsorbed gas using high-resolution geological model. [in:] Inter-national Petroleum Technology Conference 2014 (IPTC 2014): Unlocking Energy Through Innovation, Technology and Capability, Doha, Qatar, 19–22 January 2014, Society of Petroleum Engineers, 1–12.

Butel N., Hossack A. & Kizi M., 2014. Prediction of in situ rock strength using sonic velocity. [in:] Aziz N., Kininmonth B., Nemcik J., Black D., Hoelle J. & Cunbulat I., Proceedings of the 2014 Coal Operators’ Conference. Coal 2014: Australian Coal Operators’ Conference 2014, Wollongong, New South Wales, Australia, 12–14 February, 2014, 89–102.

Chang C., Zoback M.D. & Khaksar A., 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science, 51, 3, 223–237.

Cordon H.R.A. & van Hoogstraten R., 1995. Key Issues for Successful Industrial Neural Network Applications: an Application in Geology. [in:] Braspenning P.J., Thuijsman F. & Weijters A.J.M.M. (eds.), Artificial Neural Networks: An Introduction to ANN Theory and Practice, Springer, Heidelberg, 235–245.

Eaton B.A., 1975. The equation for geopressure prediction from well logs. [in:] Fall Meeting of the Society of Petroleum Engineers of AIME, 28 September – 1 October, Dallas, Texas, SPE-5544-MS, Society of Petroleum Engineers.

Encyclopædia Britannica, [access: 23.06.2017].Fjær E., Holt R.M., Horsrud P., Raaen A.M. & Risnes, R., 2008. Rock Mechanics and Rock Acoustics. [in:] Petroleum Related Rock Mechanics, Elsevier, Oxford, 192–195.

Handin J. & Hager R.V., 1957. Experimental deformation of sedimentary rocks under confining pressure: Tests at room temperature on dry samples. Bulletin of the American Association of Petroleum Geologists, 41, 1–51.

Heege H., Zijp M.H.A.A. & Nelskamp S., 2015. Sweet spot for hydraulic fracturing and oil org as production in underexplored shales using key performance indicators: example of the Posidonia Shale Formation in the Nederlands. [in:] International Petroleum Technology Conference, 6–9 December, Doha, Qatar, IPTC-18348-MS. DOI: 10.2523/IPTC-18348-MS.

Herwanger J. & Koutsabeloulis N., 2011. Building Reservoir Geomechanical Model. [in:] Seismic Geomechanics: How to Build and Calibrate Geomechanical Models using 3D and 4D Seismic Data, EAGE Publications, Houten, 17–37.

Jarosiński M., Beekman F., Bada G. & Cloetingh S., 2006. Redistribution of recent collision push and ridge push in Central Europe: insights from FEM modelling. Geophysical Journal International, 167, 2, 860–880.

Jeremic M.L., 1994. Stress analysis of mine structures. [in:] Rock Mechanics in Salt Mining, A.A. Balkema, Rotterdam, Brookfield, VT, 299–322.

Jędrzejowska-Tyczkowska H., Żukowska K., Misiarz P., Bartoń R. & Żuławiński K., 2000. Prediction of over-pressure zones in the geological formations with the use of seismic data. Nafta-Gaz, 12, 689–706.

Jędrzejowska-Tyczkowska H., 2003. Sejsmiczne konsystentne estymatory złoża węglowodorów. Prace Instytutu Górnictwa Naftowego i Gazownictwa, 123, IGNiG, Kraków. Jędrzejowska-Tyczkowska H. & Słota-Valim M., 2012.

Mechaniczny model Ziemi jako nowy i konieczny warunek sukcesu w poszukiwaniach i eksploatacji niekonwencjonalnych złóż węglowodorów. Nafta-Gaz, 68, 6, 329–340.

King G.E., 2012. Hydraulic Fracturing 101: What every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frack Risk and Improving Frack Performance in Unconventional Gas and Oil Wells. [in:] SPE Hydraulic Fracturing Technology Conference, 6-8 February, The Woodlands, Texas, USA, SPE152596-MS, Society of Petroleum Engineers.

Kowalska-Włodarczyk M. & Darłak B., 2011. Modele stochastyczne wybranych parametrów jako wsparcie konstruowania modeli geologicznych przy użyciu ANN i Fuzzy Logic. Nafta-Gaz, 67, 1, 7–13.

Kwaśniewski M. & Rodriguez-Oitaben, P., 2012. Study on the dilatancy angle of rocks in the pre-failure domain. [in:] Qian Q. & Zhou Y. (eds.), Harmonizing Rock Engi-neering and the Environment, Taylor and Francis Group, London, 681–686.

Mashinskii E.I., 2003. Differences between static and dynamic elastic moduli of rocks: Physical causes. Russian Geology and Geophysics, 44, 9, 953–959.

Plumb R., Edwards S., Pidcock G., Lee D. & Stacey B., 2000. The Mechanical Earth Model Concept and Its Application to High-Risk Well Construction Projects. [in:] IADC/SPE Drilling Conference, 23–25 February, New Orleans, Louisiana, SPE-59128-MS, Society of Petroleum Engineers. DOI: 10.2118/59128-MS.

Poprawa P., 2010. Potencjał występowania złóż gazu ziemnego w łupkach dolnego paleozoiku w basenie bałtyckim i lubelsko-podlaskim. Przegląd Geologiczny, 58, 3, 226–249.

Pyrcz M.J. & Deutsch C.V., 2014. Preliminary Mapping Concepts. [in:] Geostatistical Reservoir Modeling, Oxford University Press, New York, 118–122.

Romero A.M. & Philp R.P., 2012. Organic geochemistry of the Woodford Shale, southeastern Oklahoma: How variable can shales be? AAPG Bulletin, 96, 3, 493–517.

Sayers C., 2010. Pore pressure. [in:] Geophysics Under Stress: Geomechanical Applications of Seismic and Borehole Acoustic Waves, 2010 Distinguished Instructor Short Course, Distinguished Instructor Series, 13, Society of Exploration Geophysics and European Association of Geoscientist and Engineers, 19–44.

Slatt R.M., 2011. Important geological properties of unconventional resource shales. Central European Journal of Geosciences, 3, 4, 435–448.

Słota-Valim M., 2015. Static and dynamic elastic properties, the cause of the difference and conversion methods – case study. Nafta-Gaz, 11, 816–826.

Smith S.A.F. & Faulkner D.R., 2010. Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy. Journal of Geophysical Research, 115. DOI: 10.1029/2008JB006274.

Sonmez H., Gokceoglu C., Nefeslioglu H.A. & Kayabasi A., 2006. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with the new empirical equation. Rock Mechanics and Mining Sciences, 43, 2, 224–235.

Sowiżdżał K., 2012. Modelowanie 3D. Geostatystyczne, facjalne i parametryczne modelowanie 3D w odniesieniu do niekonwencjonalnych złóż gazu ziemnego. Prace Naukowe Instytutu Nafty i Gazu, 183, 135–150.

Stephansson O., 2003. Estimation of virgin state of stress and determination of final rock stress model. [in:] Sugawara K., Obara Y. & Sato A. (eds.), Rock Stress ’03: Proceedings of the Second International Symposium on Rock Stress, Kumamoto, Japan, 4–6 November 2003 Rock Stress ’03: Proceedings of the Second International Symposium on Rock Stress RS Kumamoto, AA. Balkema Publishers, Tokyo, 49–56.

Vecoli M. & Samuelsson J., 2001. Quantitative evaluation of microplankton paleobiogeography in the OrdovicianEarly Silurian of the northern Trans European Suture Zone: implications for the timing of the Avalonia-Baltica collision. Review of Paleobotany and Palynology, 115, 1–2, 43–68.

Verniers J., Maletz J., Kříž J., Žigaitė Ž., Paris F., Schönlaub P.H & Wrona R., 2008. Silurian. [in:] McCann T. (ed.), The Geology of Central Europe. Volume 1: Precambrian and Paleozoic, Geological Society, London, 249–256. DOI: 10.1144/CEV1P.6.

Zoback M.D., 2010. Stress fields – from tectonic plates to reservoir around the world. [in:] Reservoir Geomechanics, Cambridge University Press, Cambridge, 266–297.Zou C., 2013. Unconventional Petroleum Geology. 1 st ed. Elsevier, Burlington.



  • There are currently no refbacks.