An advanced ensemble modeling approach for predicting carbonate reservoir porosity from seismic attributes

Authors

DOI:

https://doi.org/10.7494/geol.2023.49.3.245

Keywords:

machine learning, model stacking, ensemble method, carbonates, seismic attributes, porosity prediction

Abstract

This study uses a machine learning (ML) ensemble modeling approach to predict porosity from multiple seismic attributes in one of the most promising Main Dolomite hydrocarbon reservoirs in NW Poland. The presented workflow tests five different model types of varying complexity: K-nearest neighbors (KNN), random forests (RF), extreme gradient boosting (XGB), support vector machine (SVM), single layer neural network with multilayer perceptron (MLP). The selected models are additionally run with different configurations originating from the pre-processing stage, including Yeo–Johnson transformation (YJ) and principal component analysis (PCA). The race ANOVA method across resample data is used to tune the best hyperparameters for each model. The model candidates and the role of different pre-processors are evaluated based on standard ML metrics – coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). The model stacking is performed on five model candidates: two KNN, two XGB, and one SVM PCA with a marginal role. The results of the ensemble model showed superior accuracy over single learners, with all metrics (R2 0.890, RMSE 0.0252, MAE 0.168). It also turned out to be almost three times better than the neural net (NN) results obtained from commercial software on the same testing set (R2 0.318, RMSE 0.0628, MAE 0.0487). The spatial distribution of porosity from the ensemble model indicated areas of good reservoir properties that overlap with hydrocarbon production fields. This observation completes the evaluation of the ensemble technique results from model metrics. Overall, the proposed solution is a promising tool for better porosity prediction and understanding of heterogeneous carbonate reservoirs from multiple seismic attributes.

Downloads

Download data is not yet available.

References

Abirami S. & Chitra P., 2020. Energy-efficient edge based real-time healthcare support system. [in:] Pethuru R. & Preetha E. (eds.), The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases, Advances in Computers, 117, Elsevier, 339–368. https://doi.org/10.1016/bs.adcom.2019.09.007.

Adeniran A.A., Adebayo A.R., Salami H.O., Yahaya M.O. & Abdulraheem A., 2019. A competitive ensemble model for permeability prediction in heterogeneous oil and gas reservoirs. Applied Computing and Geosciences, 14, 2070. https://doi.org/10.1016/j.acags.2019.100004.

Al-Amri M., Mahmoud M., Elkatatny S., Al-Yousef H. & Al-Ghamdi T., 2017. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction. Journal of African Earth Sciences, 131, 105–116. https://doi.org/10.1016/j.jafrearsci.2017.04.014.

Anifowose F., Labadin J. & Abdulraheem A., 2013. Ensemble learning model for petroleum reservoir characterization: a case of feed-forward back-propagation neural networks. [in:] Li J., Cao L., Wang C., Tan K.C., Liu B., Pei J. & Tseng V.S. (eds.), Trends and Applications in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science,7867, Springer, Berlin, Heidelberg, 71–82. https://doi.org/10.1007/978-3-642-40319-4_7.

Anifowose F., Labadin J. & Abdulraheem A., 2015. Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines. Applied Soft Computing, 26, 483–496. https://doi.org/10.1016/j.asoc.2014.10.017.

Bedi J. & Toshniwal D., 2019. PP-NFR: an improved hybrid learning approach for porosity prediction from seismic attributes using non-linear feature reduction. Journal of Applied Geophysics, 166, 22–32. https://doi.org/10.1016/j.jappgeo.2019.04.015.

Boehmke B. & Greenwell B., 2020. Hands-On Machine Learning with R. The R Series, Chapman and Hall/CRC Press. https://bradleyboehmke.github.io/HOML/ [access: 1.09.2023].

Breiman L., 1996a. Bagging predictors. Machine Learning, 24(2), 123–40. https://doi.org/10.1007/BF00058655.

Breiman L., 1996b. Stacked regressions. Machine Learning, 24(1), 49–64. https://doi.org/10.1007/BF00117832.

Breiman L., 2001a. Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324.

Carvalho R., Gonzalez M.G. & Lupinacci E.W., 2022. Characterizing seismic facies in a carbonate reservoir, using machine learning offshore Brazil. World Oil. https://www.worldoil.com/magazine/2022/june-2022/features/characterizing-seismic-facies-in-a-carbonate-reservoir-using-machine-learning-offshore-brazil/ [access: 1.09.2023].

Chen C.H. & Lin Z.S., 2006. A committee machine with empirical formulas for permeability prediction. Computers & Geosciences, 32(4), 485–496. https://doi.org/10.1016/j.cageo.2005.08.003.

Chen T. & Guestrin C., 2016. XGBoost: A Scalable Tree Boosting System. [in:] KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data, ACM, New York, 785–794. https://doi.org/10.1145/2939672.2939785.

Chen Y., Zhao L., Pan J., Li C., Xu M., Li K., Zhang F. & Geng J., 2021. Deep carbonate reservoir characterisation using multi-seismic attributes via machine learning with physical constraints. Journal of Geophysics and Engineering, 18(5), 761–775. https://doi.org/10.1093/jge/gxab049.

Chopra S., Lubo-Robles D. & Marfurt K., 2018. Some machine learning applications in seismic interpretation. AAPG Explorer, Search and Discovery Article, 42270.

Couch A. & Kuhn J., 2022. stacks: Stacked Ensemble Modeling with Tidy Data Principles. Journal of Open Source Software, 7(75), 4471. https://doi.org/10.21105/joss.04471.

Dramsch J.S., 2020. 70 Years of Machine Learning in Geoscience in Review. [in:] Moseley B. & Krischer L. (eds.), Machine Learning in Geosciences, Advances in Geophysics, 61, Elsevier, 1–55. https://doi.org/10.1016/bs.agph.2020.08.002.

Ferreira D.J., Dias R.M. & Lupinacci W.M., 2021. Seismic pattern classification integrated with permeability-porosity evaluation for reservoir characterization of presalt carbonates in the Buzios Field, Brazil. Journal of Petroleum Science and Engineering, 201, 108441. https://doi.org/10.1016/j.petrol.2021.108441.

Freund Y. & Schapire R., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504.

Hall M. & Hall B., 2017. Distributed collaborative prediction: Results of the machine learning contest. Leading Edge, 6, 267–269. https://doi.org/10.1190/tle36030267.1.

Hartigan J.A. & Wong M.A., 1979. K-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108. https://doi.org/10.2307/2346830.

Hastie T., Tibshirani R. & Wainwright M., 2015. Statistical Learning with Sparsity. Monographs on Statistics and Applied Probability, 143, Chapman & Hall/CRC Press.

Helmy T., Rahman S., Hossain M.I. & Abdelraheem A., 2013. Non-linear heterogeneous ensemble model for permeability prediction of oil reservoirs. Arabian Journal for Science and Engineering, 38, 1379–1395. https://doi.org/10.1007/s13369-013-0588-z.

Hendry J., Burgess P., Hunt D., Janson X. & Zampetti V. (eds.), 2021. Seismic Characterization of Carbonate Platforms and Reservoirs. Geological Society, London, Special Publications, 509. https://doi.org/10.1144/SP509-2021-51.

Hou J., Zhao L., Zeng X., Zhao W., Chen Y., Li J., Wang S. et al., 2022. Characterization and evaluation of carbonate reservoir pore structure based on machine learning. Energies, 15(9), 7126. https://doi.org/10.3390/ en15197126.

James G., Witten D., Hastie T. & Tibshirani R., 2013. An Introduction to Statistical Learning with Applications in R. Springer Texts in Statistic, 103, Springer, New York. https://doi.org/10.1007/978-1-4614-7138-7.

Jaworowski K & Wróblewski Z., 2007. Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: A depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin. Przegląd Geologiczny, 55(12/1), 1017–1024.

Jędrzejowska-Tyczkowska H., 2003. Sejsmicznie konsystentne estymatory złoża węglowodorów. Prace Instytutu Górnictwa Naftowego i Gazownictwa, 123, IGNiG, Kraków.

Jesus C., Azul, M.O, Lupinacci W.M. & Machado L., 2019. Multiattribute framework analysis for the identifcation of carbonate mounds in the Brazilian presalt zone. Interpretation, 7(2), T467–T476. https://doi.org/10.1190/INT-2018-0004.1.

Jolliffe I.T. (ed.), 2010. Principal Component Analysis. 2nd ed. Springer Series in Statistics, Springer, New York.

Kotarba M. & Wagner R., 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski – Międzychód – Lubiatów area: Geological and geochemical approach to microbial-algal source rock. Przegląd Geologiczny, 55(12/1), 1025–1036.

Kuhn M., 2014. Futility analysis in the cross-validation of machine learning models. https://doi.org/10.48550/arXiv.1405.6974.

Kuhn M. & Johnson K., 2013. Applied Predictive Modeling. Springer, New York. https://doi.org/10.1007/978-1-4614-6849-3.

Kuhn M. & Silge J., 2022. Tidy Modeling with R: A Framework for Modeling in the Tidyverse. O’Reilly Media. https://www.tmwr.org/ [access: 1.09.2023].

Lance G.N. & Williams W.T., 1966. A general theory of classifactory sorting strategies, I. Hierarchical systems. The Computer Journal, 9(4), 373–380. https://doi.org/10.1093/comjnl/9.4.373.

Malaga M., Solarski T. & Wolnowski T., 2006. Modelowanie geostatystyczne dolomitu głównego w rejonie Międzychód – Sieraków. Prace Instytutu Nafty i Gazu, 137, 1067–1071.

Mikołajewski Z. & Wróbel M., 2005. Petrografia i diageneza utworów cechsztyńskiego dolomitu głównego (Ca2) w rejonie złoża ropy naftowej Lubiatów (Polska Zachodnia). Przegląd Geologiczny, 53(4), 335–336.

Molnar C., 2019. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. https://christophm.github.io/interpretable-ml-book [access: 1.09.2023].

Moore C.H. & Wade W.J., 1989. The Classification and Nature of Carbonate Porosity. [in:] Moore C.H. (ed.), Carbonate Diagenesis and Porosity, Developments in Sedimentology, 46, Elsevier, 21–41. https://doi.org/10.1016/S0070-4571(08)71056-2.

Murtagh F. & Legendre P., 2014. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? Journal of Classification, 31, 274–295. https://doi.org/10.1007/s00357-014-9161-z.

Otchere D.A., Gana, T.O.A., Gholami R. & Lawal M., 2021a. A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction. Journal of Natural Gas Science and Engineering, 91, 103962. https://doi.org/10.1016/j.jngse.2021.103962.

Otchere D., Arbi A., Ganat T.O., Gholami R. & Ridha S., 2021b. Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models. Journal of Petroleum Science and Engineering, 200, 108182. https://doi.org/10.1016/j.petrol.2020.108182.

Papiernik B., Machowski G., Słupczyński K. & Semyrka R., 2009. Geologiczny model rejonu akumulacji ropno-gazowej Lubiatów-Międzychód Grotów. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 35(2/1), 175–182.

Pattnaik S., Chen S., Helba A. & Ma S., 2020. Automated carbonate rock facies identification with deep learning. Paper presented at the SPE Annual Technical Conference and Exhibition, 26–29 October 2020, Virtual, SPE-201673. https://doi.org/10.2118/201673-MS.

R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Raheem M.W. & Skuker A.K., 2021. Prediction by reservoir porosity using micro-seismic attribute analysis by machine learning algorithms in an Iraqi Oil Field. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 3324–3332.

Randen T. & Sønneland L., 2005. Atlas of 3D Seismic Attributes. [in:] Iske A. & Randen T. (eds.), Mathematical Methods and Modelling in Hydrocarbon Exploration and Production, Mathematics in Industry, 7, Springer, Berlin, Heidelberg, 23–46. https://doi.org/10.1007/3-540-26493-0_2

Reza S., Ali K., Behrouz R., Mohammad Y. & Saeed K., 2011. A committee machine approach for predicting permeability from well log data: A case study from a heterogeneous carbonate reservoir, Balal oil field, Persian Gulf. Journal of Geopercia, 1(2), 1–10. https://doi.org/10.22059/jgeope.2011.23279.

Sinaga T., Mohammad R. & Haidar, M., 2019. Porosity prediction using neural network based on seismic inversion and seismic attributes. E3S Web of Conference, 125, 15006. https://doi.org/10.1051/e3sconf/201912515006.

Tiab D. & Donaldson E.C., 2015. Petrophysics Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. 4rd ed. Gulf Professional Publishing, Elsevier.

Topór T., 2020. An integrated workflow for MICP-based rock typing: A case study of a tight-gas sandstone reservoir in the Baltic Basin (Poland). Nafta-Gaz, 76(4), 219–229. https://doi.org/10.18668/NG.2020.04.01.

Topór T., 2021. Application of machine learning algorithms to predict permeability in tight sandstone formations. Nafta-Gaz, 77(5), 3–12. https://doi.org/10.18668/NG.2021.05.01.

Topór T. & Sowiżdżał K., 2022. Application of machine learning tools for seismic reservoir characterization study of porosity and saturation type. Nafta-Gaz, 78(3), 165–175.

Ward J.H., Jr., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845.

Wardhana S.G. & Pratama H., 2021. Leveraging Artificial Neural Network, Support Vector Regression, and K-Nearest Neighbors for Porosity Prediction in X Well: An Integrated Petrophysics and Machine Learning. [in:] Proceedings of Joint Convention Bandung (JCB), November 23rd – 25th 2021, Ikatan Ahli Teknik Perminyakan Indonesia, Jakarta, 744–747.

Wolpert D., 1992. Stacked generalization. Neural Networks, 5(2), 241–59. https://doi.org/10.1016/S0893-6080(05)80023-1.

Yeo I.-K. & Johnson R.A., 2000. A new family of power transformations to improve normality or symmetry. Biometrika, 87(4), 954–959. http://www.jstor.org/stable/2673623.

Yoav F. & Schapire R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504.

Downloads

Published

2023-09-06

How to Cite

Topór, T., & Sowiżdżał, K. (2023). An advanced ensemble modeling approach for predicting carbonate reservoir porosity from seismic attributes. Geology, Geophysics and Environment, 49(3), 245–260. https://doi.org/10.7494/geol.2023.49.3.245

Issue

Section

Articles

Most read articles by the same author(s)