Capacity of surface water to reduce air multi-pollution in urbanized areas (the City of Krakow, southern Poland)
DOI:
https://doi.org/10.7494/geol.2024.50.2.191Keywords:
air multi-pollution, environmental quality, urbanized area, water reservoirs, surface water, aerobiological monitoring, the City of KrakowAbstract
The study analyzes changes in the physico-chemical parameters in a 400 cm2 artificial water reservoir with distilled water, exposed to a 2-week (±2 days) period of atmospheric conditions in Krakow. After nearly 500 days, dry and wet deposition caused a shift from neutral to acidic pH levels (7.30–5.12, averaging 6.22 pH) and an average electric conductivity of 19.5 μS/cm (1.6–143.0 μS/cm). The study investigated chemical and biological pollutants, including pollen and fungal spores. Three distinct air quality periods were identified: (1) characterized by vehicle and combustion-related pollutants (Oct-Jan), (2) a transitional phase with increased biological particles (Feb-May), and (3) dominated by pollen and fungal spores (Jun-Sep). Despite peak air pollution in the warmest months, air temperature showed an inverse relationship with pollutant concentration, possibly due to decreased air humidity. Precipitation positively impacted air quality. The artificial reservoir received a total of 0.7 kg of air pollutants
(723.6 mg/m2 of surface water table). This corresponds to an annual load of 0.5 kg (551.4 mg) and a daily load of 1.51 mg. The reservoir’s pollutant capture capacity was estimated at 28% ±21% (mean±SD), with a critical value of 12%. The study evaluated Krakow’s surface water reservoirs’ capacity to mitigate air pollution, indicating potential benefits for urban air quality.
Downloads
References
Airly, 2022. Ranking zanieczyszczenia powietrza europejskich miast – marzec 2022. https://airly.org/pl/ranking-zanieczyszczenia-powietrza-europejskich-miast-marzec-2022/ [access: 4.10.2022].
Aleksander-Kwaterczak U. & Plenzler D., 2019. Contamination of small urban watercourses on the example of a stream in Krakow (Poland). Environmental Earth Sciences, 78, 530. https://doi.org/10.1007/s12665-019-8509-4.
Bablik H., 1950. Galvanizing (Hot-Dip). 3rd ed. [translated by C.A. Bentley from original title ‘Das Verzienken von Eisen’]. E. & F.N. Spon, London.
Bishan C., Bing L., Chixin C., Junxia S., Shulin Z., Cailang L., Siqiao Y. & Chuanxiu L., 2020. Relationship between airborne pollen assemblages and major meteorological parameters in Zhanjiang, South China. PLoS One, 15(10), e0240160. https://doi.org/10.1371/journal.pone.0240160.
Bokwa A., 2008. Environmental impacts of long-term air pollution changes in Krakow, Poland. Polish Journal of Environmental Studies, 17(5), 673–686.
Bull K., Achermann B., Bashkin V., Chrast R., Fenech G., Forsius M., Gregor H.D., Guardans R., Haubmann T., Hayes F., Hettelingh J.P., Johannessen T., Krzyzanowski M., Kucera V., Kvaeven B., Lorenz M., Lundin L., Mills G., Posch M., Skjelkvåle B.L. & Ulstein M.J., 2001. Coordinated effects monitoring and modelling for developing and supporting international air pollution control agreements. Water, Air, & Soil Pollution, 130, 119–130. https://doi.org/10.1023/A:1012255604267.
Comité européen de normalisation (CEN), 2012. Ambient air – Standard method for the measurement of the concentration of nitrogen dioxide and nitrogen monoxide by chemiluminescence (EN 14211:2012).
Comité européen de normalisation (CEN), 2014. Ambient air – Standard gravimetric measurement method for the determination of the PM10 or PM2,5 mass concentration of suspended particulate matter (EN 12341:2014).
Comité européen de normalisation (CEN), 2019. Ambient air – Sampling and analysis of airborne pollen grains and fungal spores for networks related to allergy – Volumetric Hirst method (EN 16868).
Directive 2008/50/EC. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. https://eur-lex.europa.eu/eli/dir/2008/50/oj.
Frka S., Šala M., Brodnik H., Štefane B., Kroflič A. & Grgić I., 2022. Seasonal variability of nitroaromatic compounds in ambient aerosols: Mass size distribution, possible sources and contribution to water-soluble brown carbon light absorption, Chemosphere, 299, 134381. https://doi.org/10.1016/j.chemosphere.2022.134381.
Galán S. & Oldevilla C., 1998. Sampling instruments. [in:] Mandrioli P., Comtois P. & Levizzani V. (eds.), Methods in Aerobiology, Pitagora, Bologna, 55–59.
Galán C., Smith M., Thibaudon M., Frenguelli G., Oteros J., Gehrig R., Berger U., Clot B. & Brandao R., 2014. EAS QC Working Group, Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395. https://doi.org/10.1007/s10453-014-9335-5.
Gautam D. & Bolia N., 2020. Air pollution: impact and interventions. Air Quality, Atmosphere & Health, 13(2), 209–223. https://doi.org/10.1007/s11869-019-00784-8.
Gawryluk J.R., Palombo D.J., Curran J., Parker A. & Carlsten C., 2023. Brief diesel exhaust exposure acutely impairs functional brain connectivity in humans: a randomized controlled crossover study. Environmental Health, 22, 7. https://doi.org/10.1186/s12940-023-00961-4.
Gibbons E.K., Close P.G., Van Helden B.E. & Rooney N.J., 2023. Water in the city: Visitation of animal wildlife to garden water sources and urban lakes. Urban Ecosystems, 26(5), 1413–1425. https://doi.org/10.1007/s11252-023-01391-3.
Greaver T.L., Sullivan T.J., Herrick J.D., Barber M.C., Baron J.S., Cosby B.J., Deerhake M.E., Dennis R.L., Dubois JJ.B., Goodale C.L., Herlihy A.T., Lawrence G.B., Liu L., Lynch J.A. & Novak K.J., 2012. Ecological effects of nitrogen and sulfur air pollution in the US: What do we know? Frontiers in Ecology and the Environment, 10(7), 365–372. https://doi.org/10.1890/110049.
Grzyb J., Chmiel M.J. & Swędrzyńska D., 2017. Dobowe zmiany składu ilościowego aerozolu bakteryjnego w Krakowie. Woda-Środowisko-Obszary Wiejskie, 17, 2(58), 93–101.
Gupta N., Mathew A. & Khandelwal S., 2018. Analysis of cooling effect of water bodies on land surface temperature in nearby region: A case study of Ahmedabad and Chandigarh cities in India. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 81–93. https://doi.org/10.1016/j.ejrs.2018.03.007.
Hassall C., 2014. The ecology and biodiversity of urban ponds. Wiley Interdisciplinary Reviews: Water, 1(2), 187–206. https://doi.org/10.1002/wat2.1014.
Illman W.A. & Alvarez P.J., 2009. Performance assessment of bioremediation and natural attenuation. Critical Reviews in Environmental Science and Technology, 39(4), 209–270. https://doi.org/10.1080/10643380701413385.
Jain M., Kulshrestha U.C., Sarkar A.K. & Parashar D.C., 2000. Influence of crustal aerosols on wet deposition at urban and rural sites in India. Atmospheric Environment, 34(29–30), 5129–5137. https://doi.org/10.1016/S1352-2310
(00)00350-2.
Kalayci O., Miligkos M., Pozo Beltrán C.F., El-Sayed Z.A., Gómez R.M., Hossny E., Le Souef P., Nieto A., Phipatanakul W., Pitrez P.M., Xepapadaki P., Jiu-Yao W. & Papadopoulos N.G., 2022. The role of environmental allergen control in the management of asthma. World Allergy Organization Journal, 15(3), 100634. https://doi.org/10.1016/j.waojou.2022.100634.
Kleczkowski P., 2020. Smog w Polsce: Przyczyny, skutki, przeciwdziałanie. Wydawnictwo Naukowe PWN, Warszawa.
Kleczkowski P. & Kotarba M., 2020. Analiza zmian jakości powietrza w Krakowie oraz województwie małopolskim w latach 2012–2020 przeprowadzona na zlecenie Krakowskiego Alarmu Smogowego. https://krakowskialarmsmogowy.pl/wp-content/uploads/2021/02/Analiza-zmian-jakosci-powietrza-w-Krakowie-oraz-wojewodztwie-malopolskim-w-latach-2012-2020.pdf [access: 6.05.2024].
Kleszkowski S.A., Czop M., Motyka J. & Rajchel L.Z., 2009. Wpływ czynników geogenicznych i antropogenicznych na skład chemiczny wód podziemnych w Krakowie. Geologia, 35(1), 117–129.
Lighthart B. & Shaffer B.T., 1995. Airborne bacteria in the atmospheric surface layer: Temporal distribution above a grass seed field. Applied and Environmental Microbiology, 61(4), 1492–1496. https://doi.org/10.1128/aem.61.4.1492-1496.1995.
Manisalidis I., Stavropoulou E., Stavropoulos A. & Bezirtzoglou E., 2020. Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014.
McAllister P.M. & Chiang C.Y., 1994. A practical approach to evaluating natural attenuation of contaminants in ground water. Groundwater Monitoring & Remediation, 14(2), 161–173. https://doi.org/10.1111/j.1745-6592.1994.tb00111.x.
Moiseenko T.I., Gashkina N.A. & Dinu M.I., 2016. Enrichment of surface water by elements: Effects of airpollution, acidification and eutrophication. Environmental Processes, 3(1), 39–58. https://doi.org/10.1007/s40710-016-0132-8.
Money N.P., 2016. Chapter 3 – Spore Production, Discharge, and Dispersal. [in:] Watkinson S.C., Boddy L. & Money N.P. (eds.), The Fungi (Third Edition), Academic Press, 67–97. https://doi.org/10.1016/B978-0-12-382034-1.00003-7.
Nazar W. & Niedoszytko M., 2022. Air pollution in Poland: A 2022 narrative review with focus on respiratory diseases. International Journal of Environmental Research and Public Health, 19(2), 895. https://doi.org/10.3390/ijerph19020895.
Obtułowicz K., Kotlinowska T., Stobiecki M., Dechnik K., Obtułowicz A., Manecki A., Marszałek M. & Schejbal-Chwastek M., 1996. Environmental air pollution and pollen allergy. Annals of Agricultural and Environmental Medicine, 3(2), 131–138.
Oertli B. & Parris K.M., 2019. Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere, 10(7), e02810. https://doi.org/10.1002/ecs2.2810.
Overbury K., Conroy B.W. & Marks E., 2023. Swimming in nature: A scoping review of the mental health and wellbeing benefits of open water swimming. Journal of Environmental Psychology, 90, 102073. https://doi.org/10.1016/j.jenvp.2023.102073.
Pal G. & Poka M., 1973. Determination of the density and mass of pollen grains. Acta Agronomica Academiae Scientiarum Hungaricae, 22(3/4), 343–347.
Pierri D., 2020. Actual environmental hazards resulting from the use of public roads (based on Krakow city, southern Poland). Polish Journal of Environmental Studies, 29(4), 2803–2812. https://doi.org/10.15244/pjoes/112453.
Polski Komitet Normalizacyjny (PKN), 2004. Ochrona czystości powietrza – Pobieranie próbek – Zasady pobierania próbek powietrza w środowisku pracy i interpretacji wyników (PN-Z-04008-7:2002 + Az 1:2004).
Ritter L., Solomon K., Sibley P. & Hall K., 2002a. Sources, pathways, and risk of contaminants in water. The Walkerton Inquiry, Commissioned Paper 10, Ontario Ministry of the Attorney General, Toronto.
Ritter L., Solomon K., Sibley P., Hall K., Keen P., Mattu G. & Linton B., 2002b. Sources, pathways, and relative risks of contaminants in surface water and groundwater: A perspective prepared for the Walkerton inquiry. Journal of Toxicology and Environmental Health. Part A, 65(1), 1–142. https://doi.org/10.1080/152873902753338572.
Rogala B., 2022. Air Quality Index: Wrocław i Poznań wśród miast o najbardziej zanieczyszczonym powietrzu na świecie. https://300gospodarka.pl/live/air-quality-index-wroclaw-warszawa-krakow-ranking [access: 4.10.2022].
Rozporządzenie, 2010. Rozporządzenie Ministra Środowiska z dnia 26 stycznia 2010 r. w sprawie wartości odniesienia dla niektórych substancji w powietrzu. Dz.U. 2010 nr 16, poz. 87 [Regulation of the Minister of Environment of 26 January 2010 on reference values for certain substances in the air. Journal of Laws of 2010, No. 16, item 87].
Rozporządzenie, 2020. Rozporządzenie Ministra Klimatu i Środowiska z dnia 11 grudnia 2020 r. w sprawie dokonywania oceny poziomów substancji w powietrzu. Dz.U. 2020 poz. 2279 [Regulation of the Minister of Climate and Environment of December 11, 2020 on assessing the levels of substances in the air. Journal of Laws of 2020, item 2279].
Rozporządzenie, 2021. Rozporządzenie Ministra Środowiska z dnia 24 sierpnia 2012 r. w sprawie poziomów niektórych substancji w powietrzu. Tekst jednolity: Dz.U. 2021 poz. 845 [Regulation of the Minister of the Environment of August 24, 2012 on the levels of certain substances in the air. Consolidated text: Journal of Laws of 2021, item 845].
Rzętała M.A., 2015. Assessment of toxic metal contamination of bottom sediments in water bodies in urban areas. Soil and Sediment Contamination: An International Journal, 24(1), 49–63. https://doi.org/10.1080/15320383.2014.911721.
Shao M., Tang X., Zhang Y. & Li W., 2006. City clusters in China: Air and surface water pollution. Frontiers in Ecology and the Environment, 4(7), 353–361. https://doi.org/10.1890/1540-9295(2006)004[0353:CCICAA]2.0.CO;2.
Stach A. & Kasprzyk I., 2005. Metodyka badań zawartości pyłku roślin i zarodników grzybów w powietrzu z zastosowaniem aparatu Hirsta. Bogucki Wydawnictwo Naukowe, Poznań.
Statistical Office in Kraków, 2021. Statistical Yearbook of Kraków. https://krakow.stat.gov.pl/en/publications/statistical-yearbook/statistical-yearbook-of-krakow-2021,4,12.htm [access: 8.05.2023].
Szulecka A., Oleniacz R. & Rzeszutek M., 2017. Functionality of openair package in air pollution assessment and modeling – a case study of Krakow. Environmental Protection and Natural Resources, 28(2), 22–27. https://doi.org/10.1515/oszn-2017-0009.
Tegart L.J., Johnston F.H., Arriagada N.B., Workman A., Dickinson J.L., Green B J. & Jones P.J., 2021. ‘Pollen potency’: The relationship between atmospheric pollen counts and allergen exposure. Aerobiologia, 37(4), 825–841. https://doi.org/10.1007/s10453-021-09726-3.
Thakur A., Bharti D., Kumar J., Kumar K. & Chitrans S., 2020. Effects of air pollutants on surface water contamination. Journal of Civil & Environmental Engineering, 10(6), 1–4.
Tong Y. & Lighthart B., 1999. Diurnal distribution of total and culturable; atmospheric bacteria at a rural site. Aerosol Science and Technology, 30(2), 246–254. https://doi.org/10.1080/027868299304822.
Traczyk P. & Gruszecka-Kosowska A., 2020. The condition of air pollution in Krakow, Poland, in 2005–2020, with health risk assessment. International Journal of Environmental Research and Public Health, 17(17), 6063. https://doi.org/10.3390/ijerph17176063.
United States Environmental Protection Agency (USEPA), 1977. The Effects of air Pollution on Water Quality. PEDCo Environmental, Cincinnati, Ohio.
Utilities One, 2023. Restoration of polluted urban lakes and ponds for recreational use and ecological health. Engineering. https://utilitiesone.com/restoration-of-polluted-urban-lakes-and-ponds-for-recreational-use-and-ecological-health [access: 14.01.2024].
Wardas M. & Pawlikowski A. (red.), 2008. Nawarstwienia historyczne Krakowa: Forum Naukowe 2007. Wydawnictwa AGH, Kraków.
Wardas M., Budek L. & Helios-Rybicka E., 1996. Variability of heavy metals content in bottom sediments of the Wilga River, a tributary of the Vistula River (Krakow area, Poland). Applied Geochemistry, 11(1–2), 197–202. https://doi.org/10.1016/0883-2927(95)00087-9.
Wielgosiński G. & Zarzycki R., 2018. Technologie i procesy ochrony powietrza. Wydawnictwo Naukowe PWN, Warszawa.
Wood L.E., Vimercati G., Ferrin S. & Shackleton R.T., 2022. Perceptions of ecosystem services and disservices associated with open water swimming. Journal of Outdoor Recreation and Tourism, 37, 100491. https://doi.org/10.1016/j.jort.2022.100491.
Woodfolk J.A., Commins S.P., Schuyler A.J. & Erwin E.A., 2015. Platts-Mills TA. Allergens, sources, particles, and molecules: Why do we make IgE responses? Allergology International, 64(4), 295–303. https://doi.org/10.1016/j.alit.2015.06.001.
Wu Y., Liu J., Zhai J., Cong L., Wang Y., Ma W., Zhang Z. & Li C., 2018. Comparison of dry and wet deposition of particulate matter in near-surface waters during summer. PLOS One, 13(6), e0199241. https://doi.org/10.1371/journal.pone.0199241.
Xu X., Yang H. & Li C., 2022. Theoretical model and actual characteristics of air pollution affecting health cost: A review. International Journal of Environmental Research and Public Health, 19(6), 3532. https://doi.org/10.3390/ijerph19063532.
Yunus I.S., Harwin, Kurniawan A., Adityawarman D. & Indarto A., 2012. Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, 1(1), 136–148. https://doi.org/10.1080/21622515.2012.733966.
Zaręba M. & Danek T., 2022. Analysis of air pollution migration during COVID-19 lockdown in Krakow, Poland. Aerosol and Air Quality [Special Issue on Air Quality in a Changed World: Regional, Ambient, and Indoor Air Concentrations from the COVID to Post-COVID Era (III)], 22(3), 210275. https://doi.org/10.4209/aaqr.210275.
Downloads
Additional Files
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)