The environmental fate of metals from zinc and lead mining area in surface water (Przemsza River, southern Poland)

Authors

  • Dorota Pierri AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Hydrogeology and Engineering Geology, Krakow, Poland https://orcid.org/0000-0003-4692-165X
  • Marcin Rutkowski AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Hydrogeology and Engineering Geology, Krakow, Poland

DOI:

https://doi.org/10.7494/geol.2022.48.4.353

Keywords:

Zn-Pb ore, Upper Silesia region, Przemsza River, metals pollution, thallium, cadmium, mercury

Abstract

The chemical composition of surface waters of the Przemsza River flowing through Upper Silesia (in southern Poland) is strongly affected by Zn and Pb ore, and less by Carboniferous hard coal deposits. The chemical type of surface water is Ca-HCO3. In the waters, three groups of metals and metalloids were found that directly interfere with the mineralization of the deposit. Although genetically related to the same deposit, each group exhibits a different fate in the environment. A typical deposit association is Pb-Zn-Ag-As-Sb-Hg. The first group of metals in surface waters is consistent with the typical association of the ore Zn-Pb-Cd-(Tl), the second includes Ag-Sb-Hg, and the third includes the additives in the zinc and lead ore Co-Ni-Mo-Mn:
[(Ca↔Na)+(HCO3↔Cl)]+[(Zn-Pb-Cd-(Tl))+(Ag-Sb-Hg)+Co-Ni-Mo-Mn)].
Depending on the pH-Eh conditions, metals and metalloids precipitate out of the solution or sorb on solid particles. The concentrations of individual groups of metals are interdependent but show different environmental fates along the river course. The natural process of the enrichment of surface waters with Zn-Pb-Cd-(Tl) is by water circulation in a rock matrix naturally rich in the metals and draining groundwaters by the river. Under oxidizing and slightly alkaline conditions, Ag-Sb-Hg incorporated into the soluted chemical compounds, may, when the physicochemical parameters of the waters change, be adsorbed and/or precipitated. The presence and ratio of concentrations of Co-Ni-Mo-Mn with respect to zinc are almost identical, differing only in concentration.

Downloads

Download data is not yet available.

References

Boonsaner M., 2006. Environmental Toxicology. 4th ed. Silpakorn University Press, Nakhon Prathom.

Burda J., 2014a. Monoklina śląsko-krakowska. [in:] Kaczmarek R. (red.), EWOŚ: Encyklopedia województwa śląskiego. Tom 1, Instytut Badań Regionalnych Biblioteki Śląskiej w Katowicach, Katowice. http://ibrbs.pl/mediawiki/index.php/Monoklina_śląsko-krakowska [access: 15.11.2020].

Burda J., 2014b. Niecka górnośląska. [in:] Kaczmarek R. (red.), EWOŚ: Encyklopedia województwa śląskiego. Tom 1, Instytut Badań Regionalnych Biblioteki Śląskiej w Katowicach, Katowice. http://ibrbs.pl/mediawiki/index.php/Niecka_górnośląska [access: 15.11.2020].

Cabała J., Teper E., Teper L., Małkowski E. & Rostański A., 2004. Mineral composition in rhizosphere of plants grown in the vicinity of a Zn-Pb ore flotation tailings pond. Preliminary study. Acta Biologica Cracoviensia. Series Botanica, 46, 65–74.

Cabała J., 2001. Development of oxidation in Zn-Pb deposits in Olkusz area. [in:] Piestrzyński A. (ed.), Mineral deposits at the beginning of the 21st century: Proceedings of the joint sixth Biennial SGA-SEG Meeting: Kraków 26–29 August 2001, A.A. Balkema Publishers, Lisse, 121–124.

Cabała J. & Konstantynowicz E., 1999. Charakterystyka śląsko-krakowskich złóż cynku i ołowiu oraz perspektywy eksploatacji tych rud. [in:] Jankowski A.T. (red.), Perspektywy geologii złożowej i ekonomicznej w Polsce: tom poświęcony jubileuszowi profesora Erasta Konstantynowicza, Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 1809, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 76–98.

Cabała J. & Sutkowska K., 2006. Wpływ dawnej eksploatacji i przeróbki rud Zn-Pb na skład mineralny gleb industrialnych, rejon Olkusza i Jaworzna. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej. Studia i Materiały, 117(32), 13–22.

Chełmicki W. (red.), 2001. Źródła Wyżyny Krakowsko-Wieluńskiej i Miechowskiej: zmiany w latach 1973–2000. Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, Kraków. http://denali.geo.uj.edu.pl/publikacje.php?pdf=000020&notka=Q2hlbH1taWNraSBXLiAocmVkLiksIDIwMDEsIDxC [access 16.11.2020].

Ciszewski D., 1998. Channel processes as a factor controlling accumulation of heavy metals in river bottom sediments: consequences for pollution monitoring (Upper Silesia, Poland). Environmental Geology, 36, 45–54. https://doi.org/10.1007/s002540050319.

Crawford K. & Lee T.C.K., 2015. Using nitrate, chloride, sodium, and sulfate to calculate groundwater age. [in:] Doctor D.H., Land L. & Stephenson J.B. (eds.), Proceedings of the 14th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst NCKRI Symposium 5, University of South Florida, 43–52. https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1073&context=sinkhole_2015 [access: 2.10.2022].

Gałkiewicz T. & Śliwiński S., 1983. Charakterystyka geologiczna śląsko-krakowskich złóż cynkowo-ołowiowych. Annales Societatis Geologorum Poloniae – Rocznik Polskiego Towarzystwa Geologicznego, 53/1(4), 63–90.

geoportal.pgi.gov.pl, n.d. Map background for plotting the map of the extent of zinc and hard coal deposits [access: 15.11.2020].

Girczys J. & Sobik-Szołtysek J., 2003. Wpływ na stan wody w Brynicy zrzutu ścieków i wód dołowych. Inżynieria i Ochrona Środowiska, 6(3/4), 441–453.

ISO 9963-1:1994. Water quality – Determination of alkalinity – Part 1: Determination of total and composite alkalinity.

ISO 11885:2007. Water quality – Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).

ISO 17294-1:2004. Water quality – Application of inductively coupled plasma mass spectrometry (ICP-MS) – Part 1: General guidelines.

ISO 17294-2:2003. Water quality – Application of inductively coupled plasma mass spectrometry (ICP-MS) – Part 2: Determination of 62 elements.

ISO 9297:1989. Water quality – Determination of chloride – Silver nitrate titration with chromate indicator (Mohr’s method).

ibrbs.pl, n.d. Map background for plotting the map of the Przemsza River catchment area [access: 15.11.2020].

Lis J. & Pasieczna A., 1997. Anomalie geochemiczne Pb-Zn-Cd w glebach na Górnym Śląsku. Przegląd Geologiczny, 45(2), 182–189.

Malicka M., 2007. Metody usuwania jonów rtęci z zanieczyszczonych roztworów wodnych. Prace Naukowe GIG – Górnictwo i Środowisko [Research Reports – Mining and Environment], 4, 19–30.

Newman C.P., 2018. Guidance for Geochemical Modeling at Mine Sites. Nevada Division of Environmental Protection Bureau of Mining Regulation and Reclamation, Carson City, Nevada.

Niedzielski P., Siepak M. & Siepak J., 2001. Total content of arsenic, antimony and selenium in groundwater samples from western Poland. Polish Journal of Environmental Studies, 10(5), 347–350.

Nordstrom D.K., 2011. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 26(11), 1777–1791. https://doi.org/10.1016/j.apgeochem.2011.06.002.

Pachana K., Wattanakornsiri A. & Nanuam J., 2010. Heavy metal transport and fate in the environmental compartments. NU. International Journal of Science, 7(1), 1–11.

Pasieczna A., 2014. Zawartość rtęci w glebach oraz osadach rzecznych i strumieniowych w regionie śląsko-krakowskim. Biuletyn Państwowego Instytutu Geologicznego, 457, 69–86.

Pietrucin D., 2013. Monitoring of the aquatic environment of an industrial area with multiple sources of pollution. Bulletin of Geography. Physical Geography Series, 6, 43–58. https://doi.org/10.2478/bgeo-2013-0003.

Poulin J. & Gibb H., 2008. Mercury: Assessing the Burden of Disease at National and Local Levels. Prüss-Üstün A. (ed.), Environmental Burden of Disease Series, No. 16, World Health Organization, Geneva. http://whqlibdoc.who.int/publications/2008/9789241596572_eng.pdf [access: 20.11.2020].

Rzętała M., 2016. Zlewnia Przemszy. [in:] Kaczmarek R. (red.), EWOŚ: Encyklopedia województwa śląskiego. Tom 3, Instytut Badań Regionalnych Biblioteki Śląskiej w Katowicach, Katowice. http://ibrbs.pl/mediawiki/index.php/Zlewnia_Przemszy [access: 16.11.2020].

Szarek-Gwiazda W. & Ciszewski D., 2017. Variability of heavy metal concentrations in waters of fishponds affected by the former lead and zinc mine in southern Poland. Environment Protection Engineering, 43(1), 121–136.

Treichel W., Haładus A. & Zdechlik R., 2015. Simulation and optimization of groundwater exploitation for the water supply of Tarnów agglomeration (southern Poland). Bulletin of Geography. Physical Geography Series, 9, 21–29.

Wójcik W., Szydło J. & Stolarski Z., 1990. Charakterystyka zanieczyszczenia wód powierzchniowych rejonu olkuskiego. Zeszyty Naukowe Akademii Górniczo-Hutniczej im. Stanisława Staszica. Sozologia i Sozotechnika, 32, 33–40.

Xiangdong L. & Thornton I., 1993. Multi-element contamination of soils and plants in old mining areas. U.K. Applied Geochemistry, 8(2), 51–56. https://doi.org/10.1016/S0883-2927(09)80010-3.

Downloads

Additional Files

Published

2022-10-25

How to Cite

Pierri, D., & Rutkowski, M. (2022). The environmental fate of metals from zinc and lead mining area in surface water (Przemsza River, southern Poland). Geology, Geophysics and Environment, 48(4), 353–366. https://doi.org/10.7494/geol.2022.48.4.353

Issue

Section

Articles