Malacological indicators of anthropogenic and natural environmental changes of the Podhale Basin during the last 2000 years. Studies in the Rogoźnik Stream valley (the Carpathian Mountains, Southern Poland)

Authors

  • Witold Paweł Alexandrowicz AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of General Geology and Geotourism, Krakow, Poland https://orcid.org/0000-0002-5403-6696
  • Sylwia Skoczylas-Śniaz Polish Academy of Sciences, W. Szafer Institute of Botany, Krakow, Poland https://orcid.org/0009-0001-0437-3926
  • Paulina Laskowska AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Krakow, Poland

DOI:

https://doi.org/10.7494/geol.2023.49.3.261

Keywords:

fluvial deposits, molluscs, environmental changes, human impact, Podhale Basin, Southern Poland

Abstract

The lithological and malacological studies covered sediments forming the low terrace of the Rogoźnik Stream in the northwest part of the Podhale Basin. This terrace is characterised by a uniform structure within a significant part of the valley. Three layers of gravel and four layers of sandy and silty muds were found there. A rich and diversified malacofauna was discovered in fine-grained sediments. Its analysis allowed us to characterise environmental conditions during sediment deposition. The age of the individual components of the sedimentary sequence was determined by radiocarbon dating. A distinct change was found in the upper intervals of the sequence, corresponding to the warm phase of the Medieval Climate Optimum. This period is associated with the robust development of agriculture, and processes related to human activities became the main factor shaping the environment, influencing the course of geological processes, and changing the taxonomical and ecological structure of the fauna and flora assemblages found in this area.

Downloads

Download data is not yet available.

References

Alexandrowicz S.W., 1996. Holoceńskie fazy intensyfikacji procesów osuwiskowych w Karpatach. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 22(3), 223–262.

Alexandrowicz S.W. & Alexandrowicz W.P., 2011. Analiza malakologiczna. Metody badań i interpretacji. Rozprawy Wydziału Przyrodniczego PAU, 3, 5–302.

Alexandrowicz S.W. & Łanczont M., 1995. Loesses and alluvia in the Krzeczkowski Stream valley in Przemyśl environs (SE Poland). Annales Universitatis Mariae Curie-Sklodowska, sectio B, 50(2), 29–50.

Alexandrowicz S.W. & Wyżga B., 1992. Late Glacial and Holocene evolution of the Raba River Valley floor in the vicinity of the Carpathian Border, Southern Poland. Quaternary Studies in Poland, 11, 17–42.

Alexandrowicz S.W., Alexandrowicz W.P., Krąpiec M. & Szychowska-Krąpiec E., 1997. Zmiany środowiska południowej Polski w okresie historycznym. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 23(4), 339–387.

Alexandrowicz W.P., 1997. Malakofauna osadów czwartorzędowych i zmiany środowiska naturalnego Podhala w młodszym vistulianie i holocenie. Folia Quaternaria, 68, 7–132.

Alexandrowicz W.P., 2004. Molluscan assemblages of Late Vistulian and Holocene calcareous tufa in Southern Poland. Folia Quaternaria, 75, 3–309.

Alexandrowicz W.P., 2013a. Molluscan communities in Late Holocene fluvial deposits as an indicator of human activity: a study in Podhale Basin in Southern Poland. Ekologia Bratislava, 32, 111–125.

Alexandrowicz W.P., 2013b. Molluscan assemblages in the deposits of landslide dammed lakes as indicators of late Holocene mass movements in the Polish Carpathians. Geomorphology, 180–181, 10–23. https://doi.org/10.1016/j.geomorph.2012.09.001.

Alexandrowicz W.P., 2019a. Record of environmental changes and fluvial phases in the Late Holocene within the area of Podhale (the Carpathians, southern Poland): studies in the Falsztyński valley. Geological Quarterly, 63(4), 629–642. https://doi.org/10.7306/gq.1466.

Alexandrowicz W.P., 2019b. Malacological evidence of the natural and anthropogenic changes of the environment in the eastern part of the Carpathian Foreland: the studies in the Glinne stream valley near Rzeszów (southern Poland). Carpathian Journal of Earth and Environmental Sciences, 14(2), 367–384. https://doi.org/10.26471/cjees/2019/014/087.

Alexandrowicz W.P., 2020. Development of settlements in Podhale Basin and Pieniny Mts. (western Carpathians, southern Poland) in light of malacological research. Carpathian Journal of Earth and Environmental Sciences, 15(1), 247–259. https://doi.org/10.26471/cjees/2020/015/126.

Alexandrowicz W.P., 2022. Molluscan assemblages in sediments of a landslide on Majerz Hill near Niedzica (Inner Carpathians, Southern Poland) – phases of development and environmental changes. Geology, Geophysics and Environment, 48(1), 51–68. https://doi.org/10.7494/geol.2022.48.1.51.

Alexandrowicz W.P., 2023. Application of malacological analysis to reconstruct climate fluctuations and human activity during the Middle and Late Holocene. Research in the valley of the Grajcarek stream (Pieniny Mts., southern Poland). Acta Geologica Polonica, 73(1), 85–102. https://doi.org/10.24425/agp.2022.142643.

Alexandrowicz W.P., Szymanek M. & Rybska E., 2014. Changes to the environment of intramontane basins in the light of malacological research of calcareous tufa: Podhale Basin (Carpathians, Southern Poland). Quaternary International, 353, 250–265. https://doi.org/10.1016/j.quaint.2014.10.055.

Alexandrowicz W.P., Szymanek M. & Rybska E., 2016. Molluscan assemblages from Holocene calcareous tufa and their significance for palaeoenvironmental reconstructions. A study in the Pieniny Moutains (Carpathians, southern Poland). Carpathian Journal of Earth and Environmental Sciences, 11(1), 37–54.

Alexandrowicz Z., Alexandrowicz W.P. & Buczek K., 2019. Conservation of the Natura 2000 areas in the context of environmental changes in past and present: A case from the Polish Carpathians geoheritage. Geoheritage, 11, 517–529. https://doi.org/10.1007/s12371-018-0302-3.

Benito G., Macklin M., Panin A., Rossato S., Fontana A., Jones A.F., Machado M.J., Matlakhova E., Mozzi P. & Zielhofer C., 2015. Recurring flood distribution patterns related to short-term Holocene climatic variability. Scientific Reports, 5, 16398. https://doi.org/10.1038/srep16398.

Bradley K.R., 2000. Past global changes and their significance for the future. Quaternary Science Reviews, 19, 391–402. https://doi.org/10.1016/S0277-3791(99)00071-2.

Briffa K.R., 2000. Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quaternary Science Reviews, 19, 87–105. https://doi.org/10.1016/S0277-3791(99)00056-6.

Bronk Ramsey C., 2017. Methods for summarizing radiocarbon datasets. Radiocarbon, 59, 1809–1833. https://doi.org/10.1017/RDC.2017.108.

Čiliak M., Čejka T. & Šteffek J., 2015. Molluscan diversity in stream driftwood: relation to land use and river section. Polish Journal of Ecology, 63(1), 124–134. https://doi.org/10.3161/15052249PJE2015.63.1.011.

Czepiel J., 1999. Z dziejów osadnictwa na Podhalu. Abrys, Kraków.

Dapples F., Lotter A.F., van Leeuven J.F.N., van der Knapp W.O., Dimitriadis S. & Oswald D., 2002. Palaeolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Paleolimnology, 27, 239–248. https://doi.org/10.1023/A:1014215501407.

Frodlová J. & Horsák M., 2021. High-resolution mollusc record from the Mituchovci tufa (western Slovakia): A reference for the Holocene succession of Western Carpathian mid-elevation forests. Boreas, 50, 709–722. https://doi.org/10.1111/bor.12503.

Gębica P., 2011. Stratigraphy of alluvial fills and phases of the Holocene floods in the lower Wisłok river. Geographia Polonica, 84(spec. iss. 1), 39–60.

Gębica P., 2013a. Chronostratigraphy of alluvia and age of fluvial landforms in the Carpathians foreland during the Vistulian. Studia Quaternaria, 30(1), 19–27. https://doi.org/10.2478/squa-2013-0002.

Gębica P., 2013b. Geomorphological records of human activity reflected in fluvial sediments in the Carpathians and their foreland. Landform Analysis, 22, 21–31. https://doi.org/10.12657/landfana.022.003.

Gębica P. & Krąpiec M., 2009. Young Holocene alluvia and dendrochronology of subfossil trunks in the San river valley. Studia Geomorphologica Carpatho-Balcanica, 43, 63–75.

Gębica P., Jacyszyn A., Krąpiec M., Budek A., Czumak N., Starkel L., Andrejczuk W. & Ridush B., 2016. Stratigraphy of alluvia and phases of the Holocene floods in the valleys of the Eastern Carpathians foreland. Quaternary International, 415, 55–66. https://doi.org/10.1016/j.quaint.2015.11.088.

Grove J., 1988. The Little Ice Age. Methuen, London – New York.

Grove J.M. & Switsur R., 1994. Glacial geological evidence for the Medieval Warm Period. Climatic Change, 26, 143–169. https://doi.org/10.1007/BF01092411.

Hammer Ø., Harper D.A.T. & Ryan P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologica Electronica, 4(1), 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

Helama S., Jones P.D. & Briffa K.R., 2007. Dark Ages Cold Period: A literature review and directions for future research. The Holocene, 27(10), 1600–1606. https://doi.org/10.1177/0959683617693898.

Hoffmann T., Lang A. & Dikau R., 2008. Holocene river activity: analysing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews, 27(21–22), 2031–2040. https://doi.org/10.1016/j.quascirev.2008.06.014.

Horáčková J., Ložek V. & Juřičková L., 2015. List of malacologically treated Holocene sites with brief review of palaeomalacological research in the Czech and Slovak Republics. Quaternary International, 357, 207–211. https://doi.org/10.1016/j.quaint.2014.03.007.

Horsák M., Juřičková L. & Picka J., 2013. Molluscs of the Czech and Slovak Republics. Kabourek, Zlín.

Ivy-Ochs S., Kerschner H., Maisch M., Christl M., Kubik P.W. & Schlüchter Ch., 2009. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 28(21–22), 2137–2149. https://doi.org/10.1016/j.quascirev.2009.03.009.

Joerin U.E., Stocker T.F. & Schlüchter Ch., 2006. Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene, 16(5), 697–904. https://doi.org/10.1191/0959683606hl964rp.

Juřičkova L., Horsák M., Horáčková J. & Ložek V., 2014a. Ecological groups of snails – use and perspectives. [in:] 7th Congress of the European Malacological Societies, 7–11 September, 2014, Cambridge, UK [poster]. https://mollusca.sav.sk/malacology/Jurickova/2014-ecological-groups-poster.pdf.

Juřičková L., Horsák M., Horáčková J., Abraham V. & Ložek, V., 2014b. Pattern of land-snail succession in Central Europe over the 15,000 years: Man changes along environmental, spatial and temporal gradients. Quaternary Science Reviews, 93, 155–166. https://doi.org/10.1016/j.quascirev.2014.03.019.

Juřičková L., Šída P., Horáčková H., Ložek V. & Pokorný P., 2020. The lost paradise of snails: Transformation of the middle-Holocene forest ecosystems in Bohemia, Czech Republic, as revealed by declining land snail diversity. The Holocene, 30(9), 1254–1265. https://doi.org/10.1177/0959683620919985.

Kijowska-Strugała M., Bucała-Hrabia A. & Demczuk P., 2018. Long-term impact of land use changes on soil erosion in an agricultural catchment (the Western Polish Carpathians). Land Degradation & Development, 29(6), 1871–1884. https://doi.org/10.1002/ldr.2936.

Kłapyta P., 2021. Klimatyczne uwarunkowania rozwoju osadnictwa na prawie wołoskim w Karpatach Zachodnich na przełomie XV i XVI wieku na przykładzie Podtatrza. Balcanica Posnaniensia. Acta et Studia, 28(1), 133–148. https://doi.org/10.14746/bp.2021.28.6.

Krąpiec M., Margielewski W., Korzeń K., Szychowska-Krąpiec E., Nalepka D. & Łajczak A., 2016. Late Holocene palaeoclimate variability: The significance of bog pine dendrochronology related to peat stratigraphy. The Puścizna Wielka raised bog case study (Orawa-Nowy Targ Basin, Polish Inner Carpathians). Quaternary Science Reviews, 148, 192–208. https://doi.org/10.1016/j.quascirev.2016.07.022.

Kudsk S.G.K, Knudsen M.F, Karoff Ch., Baittinger C., Misios S. & Olsen J., 2022. Solar variability between 650 CE and 1900 – Novel insights from a global compilation of new and existing high-resolution 14C records. Quaternary Science Reviews, 292, 107617. https://doi.org/10.1016/j.quascirev.2022.107617.

Kukulak J., 2003. Impact of medival agriculture on the alluvium in the San River headwaters (Polish Eastern Carpathians). Catena, 51(3–4), 255–266. https://doi.org/10.1016/S0341-8162(02)00165-0.

Ložek V., 1964. Quartärmollusken der Tschechoslovakei. Rozpravy Ustředniho Ustavu Geologického, 31, Herausgegeben von der Geologischen Zentralanstalt im Verlag der Tschechoslowakischen Akademie der Wissenschaften, Praha.

Łajczak A., 2021. Changes of the Vistula river channel pattern and overbank accumulation rate in the Carpathian Foreland (South Poland) under human impact. Studia Geomorphologica Carpatho-Balcanica, 55, 153–184.

Łajczak A., Margielewski W., Rączkowska Z. & Święchowicz J., 2014. Contemporary geomorphic processes in the Polish Carpathians under changing human impact. Episodes, 37(1), 21–32. https://doi.org/10.18814/epiiugs/2014/v37i1/003.

Margielewski W., 1998. Landslide phases in the Polish Outer Carpathians and their relation to the climatic changes in the Late Glacial and Holocene. Quaternary Studies in Poland, 15, 37–53.

Margielewski W., 2006. Record of the Late Glacial-Holocene climatic changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. area (Polish Outer Carpathians). Folia Quaternaria, 76, 1–149.

Margielewski W., 2018. Landslide fens as a sensitive indicator of paleoenvironmental changes since the Late Glacial: a case study of the Polish Western Carpathians. Radiocarbon, 60(4), 1199–1213. https://doi.org/10.1017/RDC.2018.68.

Matthews J.A. & Briffa K.R. 2005. The ‘Little Ice Age’: re-evaluation of an evolving concept. Geografiska Annaler, 87A, 17–36.

Mauri A., Davis B.A.S., Kaplan J.O. & Collins P., 2015. The climate of Europe during the Holocene: A gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews, 112, 109–127. https://doi.org/10.1016/j.quascirev.2015.01.013.

Mayewski P.A., Rohling E.E., Stager J.C., Karlen W., Maasch K.A., Meeker L.D., Meyerson E.A., Gasse F., van Kreveld S., Holmgren K., Lee-Thorp J., Rosqvist G., Rack F., Staubwasser M., Schneider R.R. & Steig E.J., 2004. Holocene climate variability. Quaternary Research, 62(3), 243–255. https://doi.org/10.1016/j.yqres.2004.07.001.

Morisita M., 1959. Measuring of interspecific association and similarity between communities. Memories of the Faculty of Sciences, Kyushu University, E, 3, 65–80.

Nussbaumer S.U., Steinhilber F., Trachsel M., Breitenmoser P., Beer J., Blass A., Grosjean M., Hafner A., Holzhauser H., Wanner H. & Zumbühl H.J., 2011. Alpine climate during the Holocene: A comparison between records of glaciers, lake sediments and solar activity. Journal of Quaternary Science, 26, 703–713. https://doi.org/10.1002/jqs.1495.

Obidowicz A., 1990. Eine Polleanalytische und Moorkundliche Studie zur Vegetationsgeschichte des PodhaleGebietes (West-Karpaten). Acta Palaeobotanica, 30, 147–219.

Pánek T., Smolková V., Hradecký J., Baroò I. & Šilhán K., 2013. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia). Quaternary Research, 80, 33–46. https://doi.org/10.1016/j.yqres.2013.03.009

Perșoiu I. & Perșoiu A., 2019. Flood events in Transylvania during the Medieval Warm Period and the Little Ice Age. The Holocene, 29(1), 85–96. https://doi.org/10.1177/0959683618804632

Plunkett G. & Swindles G.T. 2008. Determining the Sun’s influence on Lateglacial and Holocene climates: a focus on climate response to centennial-scale solar forcing at 2800 cal. BP. Quaternary Science Reviews, 27, 175–184. https://doi.org/10.1016/j.quascirev.2007.01.015

Rączkowska Z., Łajczak A., Margielewski W. & Święchowicz J., 2012. Recent landform evolution in the Polish Carpathians. [in:] Loczý D., Stankoviansky M. & Kotarba A., (eds) Recent Landform Evolution. The Carpatho-Balcan-Dynaric Region. Springer Geography, Springer Dordrecht Heidelberg, London, New York, 47–101. https://doi.org/10.1007/978-94-007-2448-8.

Rădoane M., Chiriloaei F., Sava T., Nechita C., Rădoane N. & Gâza O., 2019. Holocene fluvial history of Romanian Carpathian rivers. Quaternary International, 527, 113–129. https://doi.org/10.1016/j.quaint.2018.11.014.

Reimer P., Austin W., Bard E., Bayliss A., Blackwell P., Bronk Ramsey C., Butzin M., Cheng M.H., Edwards R., Friedrich M., Grootes P., Guilderson T., Hajdas I., Heaton T., Hogg A., Hughen K., Kromer B., Manning S., Muscheler R. & Talamo S., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radocarbon, 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41.

Rybníček K. & Rybníčková E., 2002. Vegetation of the Upper Orava region (NW Slovakia) in the last 11000 years. Acta Palaeobotanica, 42, 153–170.

Soldati M., Corsini A. & Pasuto A., 2004. Landslides and climate change in the Italian Dolomites since the Lateglacial. Catena, 55(2), 141–161. https://doi.org/10.1016/S0341-8162(03)00113-9.

Starkel L., 1987. Man as a cause of sedimentologic changes in the Holocene. Striae, 26, 5–12.

Starkel L., 1997. Mass movement during the Holocene: Carpathian example and the European perspective. [in:] Frenzel B. et al. (Hrsg.), Rapid mass movement as a source of climatic evidence for the Holocene, European Palaeoclimate and Man, 12, Paläoklimaforschung, 19, Gustav Fischer Verlag, Stuttgart – Jena – Lübeck – Ulm, 385–400.

Starkel L., 2005. Role of climatic and anthropogenic factors accelerating soil erosion and fluvial activity in Central Europe. Studia Quaternaria, 22, 27–33.

Starkel L., Soja R. & Michczyńska D.J., 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena, 66(1–2), 24–33. https://doi.org/10.1016/j.catena.2005.07.008.

Starkel L., Michczyńska D.J., Krąpiec M., Margielewski W., Nalepka D. & Pazdur A., 2013. Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria, 40(1), 1–21. https://doi.org/10.2478/s13386-012-0024-2.

Święchowicz J., 2010. Ekstremalne spłukiwanie i erozja linijna na stokach użytkowanych rolniczo w Karpatach fliszowych. Prace i Studia Geograficzne, 45, 29–48.

Święchowicz J., Margielewski W., Starkel L, Łajczak A., Pietrzak M., Krzemień K., Gorczyca E. & Bucała-Hrabia A., 2021. Współczesna ewolucja rzeźby Karpat Zewnętrznych i Podhala. [in:] Kostrzewski A., Krzemień K., Migoń P., Starkel L., Winowski M. & Zwoliński Z. (eds.), Współczesne przemiany rzeźby Polski, Bogucki Wydawnictwo Naukowe, Poznań, 95–222. https://doi.org/10.12657/9788379863822-04.

Welter-Schultes F., 2012. European non-marine molluscs, a guide for species identification. Planet Poster Editions, Göttingen.

Wiktor A., 2004. Ślimaki lądowe Polski. Mantis, Olsztyn.

Wirth S.B., Glur L., Gilli A. & Anselmetti F.S., 2013. Holocene flood frequency across the Central Alps – Solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quaternary Science Reviews, 80, 112–128. https://doi.org/10.1016/j.quascirev.2013.09.002.

Downloads

Published

2023-09-06

How to Cite

Alexandrowicz, W. P., Skoczylas-Śniaz, S., & Laskowska, P. (2023). Malacological indicators of anthropogenic and natural environmental changes of the Podhale Basin during the last 2000 years. Studies in the Rogoźnik Stream valley (the Carpathian Mountains, Southern Poland). Geology, Geophysics and Environment, 49(3), 261–280. https://doi.org/10.7494/geol.2023.49.3.261

Issue

Section

Articles