Molluscan assemblages in sediments of a landslide on Majerz Hill near Niedzica (Inner Carpathians, Southern Poland) – phases of development and environmental changes
DOI:
https://doi.org/10.7494/geol.2022.48.1.51Keywords:
landslide, molluscan assemblages, environmental changes, Holocene, Podhale Basin, Southern PolandAbstract
A detailed malacological analysis was made of sediments associated with a small landslide which had developed on the north-eastern slope of Majerz Hill near Niedzica (Inner Carpathians, Southern Poland). The age of the development and environmental changes associated with particular phases of the landslide was determined by means of radiocarbon dating. The analyses made it possible to distinguish two periods of landslide activation falling on the turn of the Early/Middle Holocene and on the Late Holocene (probably on the Iron Age Cold Period). These phases are closely related to periods of increased mass movements, both of landslides and debris flows in other European mountains, stages of glacial advance in the Alps, periods of increased fluvial activity in rivers and elevated water levels in European lakes. The molluscan assemblages also enabled the reconstruction of environmental conditions before the landslide formation, during periods of dormancy, and after the end of its activity.
Downloads
References
Alexandrowicz S.W., 1983. Malakofauna of the Holocene calcareous sediments of the Cracow Upland. Acta Geologica Polonica, 33, 117–158.
Alexandrowicz S.W., 1993. Late Quaternary landslides at eastern periphery of the National Park of the Pieniny Mountains, Carpathians, Poland. Studia Geologica Polonica, 192, 209–225.
Alexandrowicz S.W., 1994. Pupilla alpicola (Charpentier, 1837) from Niedzica. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 20, 325–331.
Alexandrowicz S.W., 1996. Holoceńskie fazy intensyfikacji procesów osuwiskowych w Karpatach. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 22, 223–262.
Alexandrowicz S.W., 1997. Holocene dated landslides in the Polish Carpathians. [in:] Frenzel B. et al. (Hrsg.), Rapid mass movement as a source of climatic evidence for the Holocene, European Palaeoclimate and Man, 12, Paläoklimaforschung, 19, Gustav Fischer Verlag, Stuttgart –Jena – Lübeck – Ulm, 75–83.
Alexandrowicz S.W. & Alexandrowicz W.P., 2011. Analiza malakologiczna: metody badań i interpretacji. Rozprawy Wydziału Przyrodniczego – Polska Akademia Umiejętności, 3, Polska Akademia Umiejętności, Kraków.
Alexandrowicz S.W. & Alexandrowicz Z., 1999. Recurrent Holocene landslides: a case study of the Krynica landslide in the Polish Carpathians. The Holocene, 9, 91–99. https://doi.org/10.1191/095968399674419966.
Alexandrowicz W.P., 1997. Malakofauna osadów czwartorzędowych i zmiany środowiska naturalnego Podhala w młodszym vistulianie i holocenie. Folia Quaternaria, 68, 7–132.
Alexandrowicz W.P., 2004. Molluscan assemblages of Late Vistulian and Holocene calcareous tufa in Southern Poland. Folia Quaternaria, 75, 3–309.
Alexandrowicz W.P., 2013a. Molluscan assemblages in the deposits of landslide dammed lakes as indicators of late Holocene mass movements in the Polish Carpathians. Geomorphology, 180–181, 10–23. https://doi.org/10.1016/j.geomorph.2012.09.001.
Alexandrowicz W.P., 2013b. Malacological sequence from profile of calcareous tufa in Groń (Podhale Basin, southern Poland) as an indicator of the Late Glacial/Holocene boundary. Quaternary International, 293, 196–206. https://doi.org/10.1016/j.quaint. 2012.03.004.
Alexandrowicz W.P., 2015. The application of malacological analysis in the study of slope deposits: Late Pleistocene and Holocene of the Podhale Basin (Carpathians, Poland). Acta Geologica Polonica, 65, 245–261. https://doi.org/10.1515/agp-2017-0030.
Alexandrowicz W.P., 2019. Record of environmental changes and fluvial phases in the Late Holocene within the area of Podhale (the Carpathians, southern Poland): studies in the Falsztyński valley. Geological Quaterly, 63, 629–642. https://doi.org/10.7306/gq.1466.
Alexandrowicz W.P., 2020. Development of settlements in Podhale Basin and Pieniny Mts. (western Carpathians, southern Poland) in light of malacological research. Carpathian Journal of Earth and Environmental Sciences, 15, 247–259. https://doi.org/10.26471/cjees/2020/015/126.
Alexandrowicz W.P., 2021a. Natural and anthropogenic changes in the environment during the Holocene at the Kraków region (Southern Poland) from study of mollusc assemblages. Geological Quaterly, 65, 9, 1–12. https://doi.org/10.7306/gq.1577.
Alexandrowicz W.P., 2021b. The use of malacological analysis in studies on anthropogenic transformations in microhabitats: an example from the Cracow region, southern Poland. Erdkunde, 75, 15–30. https://doi.org/10.3112/erdkunde.2021.01.02.
Alexandrowicz W.P. & Rybska E., 2013. Environmental changes of intramontane basins derived from malacological analysis of profile of calcareous tufa in Niedzica (Podhale Basin, Southern Poland). Carpathian Journal of Earth and Environmental Sciences, 8, 13–26.
Alexandrowicz W.P., Szymanek M. & Rybska E., 2014. Changes to the environment of intramontane basins in the light of malacological research of calcareous tufa: Podhale Basin (Carpathians, Southern Poland). Quaternary International, 353, 250–265. https://doi.org/10.1016/j.quaint.2014.10.055.
Alexandrowicz W.P., Szymanek M. & Rybska E., 2016. Molluscan assemblages from Holocene calcareous tufa and their significance for palaeoenvironmental reconstructions: a study in the Pieniny Mountains (Carpathians, Southern Poland). Carpathian Journal of Earth and Environmental Sciences, 11, 1, 37–54.
Alexandrowicz W.P., Szymanek M. & Rybska E., 2018. Application of malacological analysis in local and regional palaeoenvironmental reconstructions – a study from the Holocene of Łapsze Niżne (Podhale, southern Poland). Acta Geologica Polonica, 68, 89–105. https://doi.org/10.1515/agp-2017-0030.a.
Birkenmajer K., 1999. Stages of structural evolution of the Niedzica Castle tectonic window, Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 115, 117–130.
Bond G., Kromer B., Beer J., Muscheler R., Evans M., Showers W., Hoffmann S., Lotti-Bond R., Hajdas I. & Bonani G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–2136. https://doi.org/10.1126/science.1065680.
Borgatti L. & Soldati M., 2010. Landslides as a geomorphological proxy for climate change: A record from the Dolomites (northern Italy). Geomorphology, 120, 56–64. https://doi.org/10.1016/j.geomorph.2009.09.015.
Braam R.R., Weiss E.E.J. & Burrough P.A., 1987. Spatial and temporal analysis on mass movement using dendrochronology. Catena, 14, 573–584. https://doi.org/10.1016/0341-8162(87)90007-5.
Bronk Ramsey C., 2017. Methods for Summarizing Radiocarbon Datasets. Radiocarbon, 59, 1809–1833. https://doi.org/10.1017/RDC.2017.108.
Bucała-Hrabia A., Kijowska-Strugała M., Śleszyński P., Rączkowska Z., Izdebski W. & Malinowski Z., 2022. Evaluating of the use of the landslide database in spatial planning in mountain communes. Land Use Policy, 112, 105842, 1–15. https://doi.org/10.1016/j.landusepol.2021.105842.
Dapples F., Lotter A.F., van Leeuven J.F.N., van der Knapp W.O., Dimitriadis S. & Oswald D., 2002. Palaeolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Paleolimnology, 27, 239–248. https://doi.org/10.1023/A:1014215501407.
Dehm R., 1967. Die landschnecke Discus ruderatus im Postglazial Süddeutschlands. Mitteilungen der Bayerische Staatssammlung für Paläontologie und Historische Geologie, 7, 135–155.
Dehm R., 1987. Die landschnecke Discus perspectivus im Postglazial Südbayerns. Mitteilungen der Bayerische Staatssammlung für Paläontologie und Historische Geologie, 27, 21–30.
Frodlová J. & Horsák M., 2021. High-resolution mollusc record from the Mituchovci tufa (western Slovakia): a reference for the Holocene succession of Western Carpathian mid-elevation forests. Boreas, 50, 709–722. https://doi.org/10.1111/bor.12503.
Gedda B., 2001. Environmental and climatic aspects of the early and mid Holocene calcareous tufa and land mollusc fauna in southern Sweden. LUNDQUA Thesis, 45, Department of Quaternary Geology, Lund University.
Gedda B., 2006. Terrestrial mollusc succession and stratigraphy of a Holocene calcareous tufa deposit from the Fyledalen valley, southern Sweden. The Holocene, 16, 137–147. https://doi.org/10.1191/0959683606hl914rr.
Gil E. & Starkel L., 1979. Long-term extreme rainfalls and their role in the modeling of flysch slopes. Studia Geomorphologica Carpatho-Balcanica, 13, 207–220.
Golonka J., Krobicki M. & Waśkowska A., 2018. The Pieniny Klippen Belt in Poland. Geology, Geophysics & Environment, 44, 111–125. https://doi.org/10.7494/geol.2018.44.1.111.
Granai S., Dabkowski J., Hájková H., Naton G-H. & Brou L., 2020. Holocene palaeoenvironments from the Direndall tufa (Luxembourg) reconstructed from the molluscan succession and stable isotope records. The Holocene, 30, 982–995. https://doi.org/10.1177/0959683620908659.
Hammer Ø., Harper D.A.T. & Ryan P.D., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologica Electronica, 4, 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Horáčková J., Ložek V. & Juřičková L., 2015. List of malacologically treated Holocene sites with brief review of palaeomalacological research in the Czech and Slovak Republics. Quaternary International, 357, 207–211. https://doi.org/10.1016/j.quaint.2014.03.007.
Horsák M. & Hájek M., 2005. Habitat requirements and distribution of Vertigo geyeri (Gastropoda: Pulmonata) in the Western Carpathian rich fens. Journal of Conchology, 38, 683–700.
Horsák M., Škodová J., Myšák J., Čejka T., Ložek V. & Hlaváč J.Č., 2010. Pupilla pratensis (Gastropoda: Pupillidae) in the Czech Republic and Slovakia and its distinction from P. muscorum and P. alpicola based on multidimensional analysis of shell measurements. Biologia, 65, 1012–1018. https://doi.org/10.2478/s11756-010-0117-4.
Horsák M., Škodová J. & Cernohorsky N.H., 2011. Ecological and historical determinants of Western Carpathian populations of Pupilla alpicola (Charpentier, 1837) in relation to its present range and conservation. Journal of Molluscan Studies, 77, 248–254. https://doi.org/10.1093/mollus/eyr010.
Horsák M., Juřičková L. & Picka J., 2013. Molluscs of the Czech and Slovak Republics. Kabourek, Zlín. Horsák M., Limondin-Lozouet N., Juřičková L., Granai S., Horáčková J., Legentil C. & Ložek V., 2019. Holocene succession patterns of land snails across temperate Europe: East to west variation related to glacial refugia, climate and human impact. Palaeogeography, Palaeoclimatology, Palaeoecology, 524, 13–24. https://doi.org/10.1016/j.palaeo.2019.03.028.
Ivy-Ochs S., Kerschner H., Maisch M., Christl M., Kubik P.W. & Schlüchter Ch., 2009. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 28, 2137–2149. https://doi.org/10.1016/j.quascirev.2009.03.009.
Joerin U.E., Stocker T.F. & Schlüchter Ch., 2006. Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene, 16, 697–904. https://doi.org/10.1191/0959683606hl964rp.
Juřičkova L., Horsák M., Horáčková J. & Ložek V., 2014a. Ecological groups of snails – use and perspectives. European Malacological Congress, Cambrige, UK [poster]. http://mollusca.sav.sk/malacology/Jurickova/2014-ecological-groups-poster.pdf.
Juřičková L., Horsák M., Horáčková J., Abraham V. & Ložek V., 2014b. Pattern of land-snail succession in Central Europe over the 15,000 years: Man changes along environmental, spatial and temporal gradients. Quaternary Science Reviews, 93, 155–166. https://doi.org/10.2016/j.quascirev.2014.03.019.
Juřičková L., Pokorný P., Hošek L., Horáčková J., Květoň J., Zahajská P., Jansová A. & Ložek V., 2018. Early postglacial recolonization, refugial dynamics and the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. The Holocene, 28, 583–594. https://doi.org/10.1177/0959683617735592.
Juřičková L., Horáčková J., Jansová A., Kovanda J., Harčár J. & Ložek V., 2019. A glacial refugium and zoogeographic boundary in the Slovak eastern Carpathians. Quaternary Research, 91, 383–398. https://doi.org/10.2017/qua.2018.68.
Kerney M.P., Cameron R.A.D. & Jungbluth J.H., 1983. Die Landschnecken Nord- und Mitteleuropas. Verlag P. Parey, Hamburg – Berlin.
Krąpiec M. & Margielewski W., 1991. Zastosowanie analizy dendrogeomorfologicznej w datowaniu powierzchniowych ruchów masowych. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 17, 67–81.
Krąpiec M. & Margielewski W., 2000. Analiza dendrogeomorfologiczna ruchów masowych na obszarze polskich Karpat fliszowych. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 26, 141–171.
Krolopp E. & Sümegi P., 1993. Vertigo modesta (Say 1924), Vertigo geyeri Lindholm 1925 and Vertigo genesii (Gredler 1856) species in Pleistocene formations of Hungary. Malacological Newsletter, 12, 9–14.
Kulka A., Rączkowski W., Żytko K. & Paul Z., 1985. Szczegółowa mapa geologiczna Polski. 1:50 000. Arkusz Szczawnica-Krościenko. Państwowy Instytut Geologiczny, Wydawnictwa Geologiczne, Warszawa.
Lang A., Moya J., Corominas J., Schrott L. & Dikau R., 1999. Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology, 30(1–2), 33–52. https://doi.org/10.1016/S0169-555X(99)00043-4.
Limondin-Lozouet N., 1992. Biogéographie holocène de Vertiginidae (Mollusca: Gastropoda) européens: relations avec la dernière déglaciation. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, sciences de l’univers, sciences de la terre, 315, 1281–1287.
Limondin-Lozouet N., 2011. Successions malacologiques à la charnière Glaciaire/ Interglaciaire: du modèle Tardiglaciaire- Holocène aux transitions du Pleistocène. Quaternaire, 22, 3, 211–220. https://doi.org/10.4000/quaternaire.5971.
Limondin-Lozouet N. & Preece R.C., 2004. Molluscan successions from the Holocene tufa of St Germain-le-Vasson, Normandy (France) and their biogeographical significance. Journal of Quaternary Science, 19, 55–71. https://doi.org/10.1002/jqs.812.
Limondin-Lozouet N. & Preece R.C., 2014. Quaternary perspectives on the diversity of land snail assemblages from northwestern Europe. Journal of Molluscan Studies, 80, 224–237. https://doi.org/10.1093/mollus/eyu047.
Limondin-Lozouet N. & Rousseau D.D., 1991. Holocene climate as reflected by a malacological sequence at Verriers, France. Boreas, 20, 207–229. https://doi.org/10.1111/j.1502-3885.1991.tb00152.x.
Ložek V., 1964. Quartärmollusken der Tschechoslovakei. Rozpravy Ustředního Ustavu Geologického, 31, Herausgegeben von der Geologischen Zentralanstalt im Verlag der Tschechoslowakischen Akademie der Wissenschaften, Praha.
Ložek V., 2000. Palaeoecology of Quaternary Mollusca. Sbornik Geologickych Ved – Antropozoikum, 24, 35–59.
Magny M., 1993. Holocene fluctuation of lake levels in the French Jura and Sub-Alpine ranges, and their impactions for past general circulation patterns. The Holocene, 3, 306–313. https://doi.org/10.1177/095968369300300402.
Magny M., 2004. Holocene climatic variability as reflected by mid-European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quaternary International, 113, 65–79. https://doi.org/10.1016/S1040-6182(03)00080-6.
Mania D., 1995. The influence of Quaternary climatic development on the Central European mollusc fauna. Acta Zoologica Cracoviensis, 38, 17–34.
Margielewski W., 1998. Landslide phases in the Polish Outer Carpathians and their relation to the climatic changes in the Late Glacial and Holocene. Quaternary Studies in Poland, 15, 37–53.
Margielewski W. (ed.), 2003. Late Glacial-Holocene palaeoenvironmental changes in the Western Carpathians: case studies of landslide forms and deposits. Folia Quaternaria, 74, Polska Akademia Umiejętności, Kraków.
Margielewski W., 2006. Records of the late glacial-holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy mts area (Polish outer Carpathians). Folia Quaternaria, 76, Polska Akademia Umiejętności, Kraków.
Margielewski W., 2009. Problematyka osuwisk strukturalnych w Karpatach fliszowych w świetle zunifikowanych kryteriów klasyfikacji ruchów masowych – przegląd krytyczny. Przegląd Geologiczny, 57, 905–917.
Margielewski W., 2018. Landslide fens as a sensitive indicator of paleoenvironmental changes since the Late Glacial: a case study of the Polish Western Carpathians. Radiocarbon, 60, 1199–1213. https://doi.org/10.1017/RDC.2018.68.
Mayewski P.A., Rohling E.E., Stager J.C., Karlen W., Maasch K.A., Meeker L.D., Meyerson E.A., Gasse F., van Kreveld S., Holmgren K., Lee-Thorp J., Rosqvist G., Rack F., Staubwasser M., Schneider R.R. & Steig E.J., 2004. Holocene climate variability. Quaternary Research, 62, 243–255. https://doi.org/10.1016/j.yqres.2004.07.001.
Mauri A., Davis B.A.S., Kaplan J.O. & Collins P., 2015. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews, 112, 109–127. https://doi.org/10.1016/j.quascirev.2015.01.013.
Meyrick R.A., 2001. The development of terrestial mollusc faunas in the ‘Rheinland region’ (western Germany and Luxembourg) during the Lateglacial and Holocene. Quaternary Science Reviews, 16–17, 1667–1675. https://doi.org/10.1016/S0277-3791(01)00031-2.
Meyrick R.A., 2002. Holocene molluscan faunal history and environmental change at Kloster Mühle, Rheinland- Pfalz, western Germany. Journal of Quaternary Science, 18, 121–132. https://doi.org/10.1002/jqs.728.
Meyrick R.A. & Preece R.C., 2001. Molluscan successions from two Holocene tufas near Northampton, English Midlands. Journal of Biogeography, 28, 77–93. https://doi.org/10.1046/j.1365-2699.2001.00516.x.
Michczyński A., Kołaczek P., Margielewski W., Michczyńska D.J. & Obidowicz A., 2013. Radiocarbon age-depth modeling prevents from misinterpretation of vegetation dynamic in the past: case study Wierchomla Mire (Polish Outer Carpathians). Radiocarbon, 55, 1724–1734.https://doi.org/10.1017/S0033822200048645.
Mitka J., Bąba W. & Szczepanek K., 2014. Putative forest glacial refugia in the Western and Eastern Carpathians. Modern Phytomorphology, 5, 85–92. https://doi.org/10.5281/zenodo.161009.
Morisita M., 1959. Measuring of interspecific association and similarity between communities. Memories of the Faculty of Sciences, Kyushu University. Series E (Biology), 3, 65–80.
Nussbaumer S.U., Steinhilber F., Trachsel M., Breitenmoser P., Beer J., Blass A., Grosjean M., Hafner A., Holzhauser H., Wanner H. & Zumbühl H.J., 2011. Alpine climate during the Holocene: a comparison between records of glaciers, lake sediments and solar activity. Journal of Quaternary Science, 26, 703–713. https://doi.org/10.1002/jqs.1495.
Obidowicz A., 1990. Eine Polleanalytische und Moorkundliche Studiezur Vegetationsgeschichte des Podhale-Gebietes (West-Karpaten). Acta Palaeobotanica, 30, 147–219.
Pánek T., Smolková V., Hradecký J., Baroò I. & Šilhán K., 2013. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia). Quaternary Research, 80, 33–46. https://doi.org/10.1016/j.yqres.2013.03.009.
Pokryszko B.M., 1990. The Vertiginidae of Poland (Gastropoda: Pulmonata: Pupillidae) – a systematic monograph. Annales Zoologici, 43, 133–257.
Preece R.C., 1998. Mollusca. [in:] Preece R.C. & Bridgland D.R. (eds.), Late Quaternary Environmental Change in North-West Europe: Excavations at Holywell Coombe, South-West England, Chapman & Hall, London, 158–212.
Preece R.C. & Bridgland D.R., 1999. Holywell Coombe, Folkestone: a 13,000 year history of an English Chalkland Valley. Quaternary Science Reviews, 18, 1075–1125. https://doi.org/10.1016/S0277-3791(98)00066-3.
Preece R.C. & Day S.P., 1994. Comparison of Post-glacial molluscan and vegetational successions from a radiocarbon-dated tufa sequence in Oxfordshire. Journal of Biogeography, 21, 463–468. https://doi.org/10.2307/2845651.
Ralska-Jasiewiczowa M. & Starkel L., 1988. Record of the hydrological changes during the Holocene in the lake, mire and fluvial deposits of Poland. Folia Quaternaria, 57, 91–127.
Rączkowski W., 2007. Landslide hazard in Polish Flysch Carpathians. Studia Geomorphologica Carpatho-Balcanica, 41, 61–75.
Reimer P., Austin W., Bard E., Bayliss A., Blackwell P., Bronk Ramsey C., Butzin M. et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62, 725–757. https://doi.org/10.1017/RDC.2020.41.
Rohling E. & Pälike H., 2005. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature, 434, 975–979. https://doi.org/10.1038/nature03421.
Rybníček K. & Rybníčková E., 2002. Vegetation of the Upper Orava region (NW Slovakia) in the last 11 000 years. Acta Palaeobotanica, 42, 153–170.
Schenková V. & Horsák M. 2013. Refugial populations of Vertigo lilljeborgi and V. genesii (Vertiginidae): New isolated occurrences in Central Europe, ecology and distribution. American Malacological Bulletin, 31, 323–329. https://doi.org/10.4033/006/031/0211.
Schenková V., Horsák M., Plesková Z. & Pawlikowski P., 2012. Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. Journal of Molluscan Studies, 78, 105–111. https://doi.org/10.1093/mollus/eyr046.
Soldati M., Corsini A. & Pasuto A., 2004. Landslides and climate change in the Italian Dolomites since the Lateglacial. Catena, 55, 141–161. https://doi.org/10.1016/S0341-8162(03)00113-9.
Starkel L., 1985. The reflection of the Holocene climatic variations in the slope and fluvial deposits and forms in the European mountains. Ecologia Merditerranea, 11, 91–97.
Starkel L., 1997. Mass movement during the Holocene: Carpathian example and the European perspective. [in:] Frenzel B. et al. (Hrsg.), Rapid mass movement as a source of climatic evidence for the Holocene, European Palaeoclimate and Man, 12, Paläoklimaforschung, 19, Gustav Fischer Verlag, Stuttgart – Jena – Lübeck – Ulm, 385–400.
Starkel L., Gębica P. & Superson J., 2007. Last Glacial-Interglacial cycle in the evolution of river valleys in southern and central Poland. Quaternary Science Reviews, 26, 2924–2936. https://doi.org/10.1016/j.quascirev.2006.01.038.
Starkel L., Michczyńska D.J., Krąpiec M., Margielewski W., Nalepka D. & Pazdur A., 2013. Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria, 40, 1–21. https://doi.org/10.2478/s13386-012-0024-2.
Starkel L., Soja R. & Michczyńska D.J., 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena, 66, 24–33. https://doi.org/10.1016/j.catena.2005.07.008.
Stoffel M., Butler D. & Corona C., 2013. Mass movements and tree rings: A guide to dendrogeomorphic field sampling and dating. Geomorphology, 200, 106–120. https://doi.org/10.1016/j.geomorph.2012.12.017.
Vavrová Ľ., Horsák M., Šteffek J. & Čejka T., 2009. Ecology, distribution and conservation of Vertigo species of the European importance in Slovakia. Journal of Conchology, 40, 61–71.
Walker M., Head M.J., Lowe J., Berkelhammer M., Björck S., Cheng H., Cwynar L.C. et al., 2019. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. Journal of Quaternary Science, 34, 173–186. https://doi.org/10.1002/jqs.3097.
Welter-Schultes F., 2012. European non-marine molluscs, a guide for species identification. Planet Poster Editions, Göttingen.
Wiktor A., 2004. Ślimaki lądowe Polski. Mantis, Olsztyn.
Ziętara T., 1968. Rola gwałtownych ulew i powodzi w modelowaniu rzeźby Beskidów. Prace Geograficzne – Polska Akademia Nauk. Instytut Geografii, 60, Wydawnictwa Geologiczne, Warszawa.
Žak K., Ložek V., Kadlec J., Hladiková J. & Cilek V., 2002. Climate-inducted changes in Holocene calcareous tufa formations, Bohemian Karst, Czech Republic. Quaternary International, 91, 137–152. https://doi.org/10.1016/ S1040-6182(01)00107-0.
Downloads
Published
How to Cite
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)