Geochemistry indices and biotests as useful tools in the assessment of the degree of sediment contamination by metals
DOI:
https://doi.org/10.7494/geol.2023.49.1.5Keywords:
metals, bottom sediments, zinc and lead ore mining area, ecotoxicity, risk assessmentAbstract
Ecological and geochemical indicators have been widely accepted as tools with the potential for rapid risk assessment of metal contamination of bottom sediments. In this study, we propose a selection of such indicators to characterize the potential ecological risks stemming from metal contamination of the bottom sediments of the Chechło reservoir (S Poland). The Chechło reservoir is located in an area formerly occupied by zinc and lead ore mining and processing industry. High amounts of metals, especially zinc (39.37–4772.00 mg/kg d.m.), cadmium (0.37–21.13 mg/kg d.m.) and lead (4.50–434.49 mg/kg d.m.) have been found in the bottom sediments. Both geochemical (CD – contamination degree) and ecological indices (mean PECQ) were indicative of bottom sediment contamination and their potential toxicity to living organisms. Most of the bottom sediment samples (71%) examined were toxic for Heterocypris incongruens, while only 9% of the samples were toxic to Sinapis alba. However, no significant correlations between the metal content and the response of the test organisms were observed. Correlation and principal component analyses (PCA) showed that silt and clay fractions were the key factors influencing the metal content in the sediments. Our study makes a contribution to building evidence of the need to integrate several indices for the assessment of environmental risks related to the presence of metals in bottom sediments rather than relying on a single one.
Downloads
References
Al-Mur B.A., Quicksall A.N. & Al-Ansari A.M.A., 2017. Spatial and temporal distribution of heavy metals in coastal core sedi-ments from the Red Sea, Saudi Arabia. Oceanologia, 59(3), 262–270. https://doi.org/10.1016/j.oceano.2017.03.003.
Apitz S., 2011. Sustainable sediment management? Integrated Environmental Assessment and Management, 7(4), 691–693. https://doi.org/10.1002/ieam.264.
Baran A. & Wieczorek J., 2015. Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils. Archives of Environmental Protection, 41(2), 53–62.
Baran A., Tarnawski M. & Koniarz T., 2016. Spatial distribution of trace elements and ecotoxicity of bottom sediments in Ryb-nik reservoir, Silesian-Poland. Environmental Science and Pollution Research, 23(17), 17255–17268. https://doi.org/10.1007/s11356-016-6678-1.
Baran A., Mierzwa-Hersztek M., Gondek K., Tarnawski M., Szara M., Gorczyca O. & Koniarz T., 2019. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environmental Geochemistry and Health, 41(6), 2893–2910. https://doi.org/10.1007/s10653-019-00359-7.
Baran A., Tack F.M.G., Delemazure A., Wieczorek J., Tarnawski M. & Birch G., 2023. Metal contamination in sediments of dam reservoirs: A multi-facetted generic risk assessment. Chemosphere, 310, 136760. https://doi.org/10.1016/j.chemosphere.2022.136760.
Bogdał A., Zarzycki J., Wałęga A., Mundała P., Kowalik T., Szwalec A., Kędzior R. et al., 2014. Uwarunkowania przyrodnicze i hydrochemiczne rewitalizacji zbiornika wodnego Chechło w gminie Trzebinia: monografia. Wydawnictwo Uniwersytetu Rolniczego, Kraków.
Bojakowska I., 2001. Kryteria oceny zanieczyszczenia osadów wodnych. Przegląd Geologiczny, 49(3), 213–219.
Cabała J., Żogała B. & Dubiel R., 2008. Geochemical and geophysical study of historical Zn-Pb ore processing waste dump areas (Southern Poland). Polish Journal of Environmental Studies, 17(5), 693–700.
Castro M.F., Almeida C.A., Bazán C., Vidal J., Delfini C.D. & Villegas L.B., 2021. Impact of anthropogenic activities on an urban river through a comprehensive analysis of water and sediments. Environmental Science and Pollution Research, 28(28), 37754–37767. https://doi.org/10.1007/s11356-021-13349-z.
Ciszewski D., 1997. Source of pollution as a factor controlling distribution of heavy metals in bottom sediments of Chechlo River (south Poland). Environmental Geology, 29(1–2), 50–57. https://doi.org/10.1007/s002540050103.
Ciszewski D., Cichoń S. & Wojtal A., 2018. Zapis zakończenia eksploatacji rud Zn-Pb w osadach rzeki i małych zbiorników wodnych [Record of cessation the Zn-Pb ore extraction in river and small water reservoirs sediments]. Prace i Studia Geo-graficzne, 63(3), 119–132.
de Castro-Català N., Kuzmanovic M., Roig N., Sierra J., Ginebreda A., Barceló D., Pérez S. et al., 2016. Ecotoxicity of sedi-ments in rivers: invertebrate community, toxicity bioassays and toxic unit approach as complementary assessment tools. Science of the Total Environment, 540, 297–306. https://doi.org/10.1016/j.scitotenv.2015.06.071.
De Cooman W., Blaise C., Janssen C., Detemmerman L., Elst R., Persoone G., 2015. History and sensitivity comparison of two standard whole-sediment toxicity tests with crustaceans: the amphipod Hyalella azteca and the ostracod Heterocypris in-congruens microbiotest. Knowledge and Management of Aquatic Ecosystems, 416, 15. https://doi.org/10.1051/kmae/2015011.
Förstner U. & Salomons W., 2010. Sediment research, management and policy: A decade of JSS. Journal of Soils and Sediments, 10(8), 1440–1452. https://doi.org/10.1007/s11368-010-0310-7.
Gao L., Wang Z., Li S. & Chen J., 2018. Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, Zn) in sediment cores from the Shima River, South China. Chemosphere, 192, 31–42. https://doi.org/10.1016/j.chemosphere.2017.10.110.
Heise S., Babut M., Casado C., Feiler U., Ferrari B.J.D. & Marziali L., 2020. Ecotoxicological testing of sediments and dredged material: an overlooked opportunity? Journal of Soils and Sediments, 20(12), 4218–4228. https://doi.org/10.1007/s11368-020-02798-7.
Ingersoll C.G., MacDonald D., Wang N., Crane J.L., Field L.J., Haverland P.S., Kemble N.E. et al., 2001. Predictions of sedi-ment toxicity using consensus-based freshwater sediment quality guidelines. Archives of Environmental Contamination and Toxicology, 41(1), 8–21. https://doi.org/10.1007/s002440010216.
ISO 11269-1, 2012. Soil quality – Determination of the effects of pollutants on soil flora – Part 1: Method for the measurement of inhibition of root growth.
ISO 14371, 2012. Water quality – Determination of freshwater sediment toxicity to Heterocypris incongruens (Crustacea, Os-tracoda).
Jaiswal D. & Pandey J., 2018. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotox-icological implications in the Ganga River (India). Ecotoxicological and Environmental Safety, 150, 104–115. https://doi.org/10.1016/j.ecoenv.2017.12.015.
Koniarz T., Tarnawski M. & Baran A., 2014. Content of lead in bottom sediments of the water reservoir located in urban areas. Logistyka, 4, 4445–4453.
Koniarz T., Tarnawski M., Baran A. & Florencka N., 2015. Mercury contamination of bottom sediments in water reservoirs of southern Poland. Geology, Geophysics & Environment, 41(2), 169–175. https://doi.org/10.7494/geol.2015.41.2.169.
Koniarz T., Baran A. & Tarnawski M., 2022. Agronomic and environmental quality assessment of growing media-based on bottom sediment. Journal of Soils and Sediments, 22(4), 1355–1367. https://doi.org/10.1007/s11368-022-03173-4.
Kulbat E. & Sokołowska A., 2019. Methods of assessment of metal contamination in bottom sediments (case study: Straszyn Lake, Poland). Archives of Environmental Contamination and Toxicology, 77(4), 605–618. https://doi.org/10.1007/s00244-019-00662-5.
MacDonald D.D., Ingersoll C.G. & Berger T.A., 2000. Development and evaluation of Consensus-Based Sediment Quality Guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/s002440010075.
Majumder R.K., Faisal B.M.R., Zaman M.N., Uddin M.J. & Sultana N., 2015. Assessment of heavy metals pollution in bottom sediment of the Buriganga River, Dhaka, Bangladesh by multivariate statistical analysis. International Research Journal of Environment Sciences, 4(5), 80–84.
Nałęcz-Jawecki G., Szczęsny Ł., Solecka D. & Sawicki J., 2011. Short ingestion tests as alternative proposal for conventional range finding assays with Thamnocephalus platyurus and Brachionus calyciflorus. International Journal of Environmental Science and Technology, 8(4), 687–694. https://doi.org/10.1007/BF03326253.
Nawrot N., Wojciechowska E., Mohsin M., Kuittinen S., Pappinen A. & Rezania S., 2021. Trace metal contamination of bottom sediments: A review of assessment measures and geochemical background determination methods. Minerals, 11(8), 872. https://doi.org/10.3390/min11080872.
Oleszczuk P., Jośko I. & Kuśmierz M., 2013. Biochar properties regarding to contaminants content and ecotoxicological as-sessment. Journal of Hazardous Materials, 260, 375–382. https://doi.org/10.1016/j.jhazmat.2013.05.044.
Ostracodtoxkit F., 2001. “Direct Contact” Toxicity Test for Freshwater Sediments. Standard Operational Procedure. MicroBi-oTest, Gent, Belgium.
Pasieczna A., Lis J. Górecka E., Dusza-Dobek A. & Witkowska A., 2008. Szczegółowa mapa geochemiczna Górnego Śląska. Arkusz Olkusz [Detailed geochemical map of Upper Silesia. Sheet Olkusz]. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
Perrodin Y., Babut M., Bedell J.-P., Bray M., Clement B., Delolme C., Devaux A. et al., 2006. Assessment of ecotoxicological risks related to depositing dredged materials from canals in northern France on soil. Environmental International, 32(6), 804–814. https://doi.org/10.1016/j.envint.2006.05.003.
Persoone G., Marsalek B., Blinova I., Törökne A., Zarina D., Manusadzianas L., Nalecz-Jawecki G. et al., 2003. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicolo-gy, 18(6), 395–402. https://doi.org/10.1002/tox.10141.
Phytotoxkit, 2004. Seed germination and early growth microbiotest with higher plants. Standard Operational Procedure. Mi-croBioTest, Gent, Belgium. http://www.microbiotests.be/SOPs/Phytotoxkit%20SOP%20-%20A5.pdf.
Ruiz F., Abad M., Bodergat A.M., Carbonel P., Rodríguez-Lázaro J., González-Regalado M.L., Toscano A. et al., 2013. Fresh-water ostracods as environmental tracers. International Journal of Environmental Science and Technology, 10(5), 1115–1128. https://doi.org/10.1007/s13762-013-0249-5.
Sevilla J.B., Nakajima F. & Kasuga I., 2014. Comparison of aquatic and dietary exposure of heavy metals Cd, Cu, and Zn to benthic ostracod Heterocypris incongruens. Environmental Toxicology and Chemistry, 33(7), 1624–1630. https://doi.org/10.1002/etc.2596.
Shaheen S.M. & Rinklebe J., 2014. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe. Geoderma, 228–229, 152–159. https://doi.org/10.1016/j.geoderma.2013.10.012.
Shirneshan G., Bakhtiari A.R., Seyfabadi S.J. & Mortazavi S., 2013. Environmental geochemistry of Cu, Zn and Pb in sediment from Qeshm Island-Persian Gulf, Iran: A comparison between the northern and southern coast and ecological risk. Geo-chemistry International, 51(8), 670–676. https://doi.org/10.1134/S0016702913050078.
Szara M., Baran A., Klimkowicz-Pawlas A. & Tarnawski M. 2020. Ecotoxicological and chemical properties of the Rożnów reservoir bottom sediment amended with various waste materials. Journal of Environmental Management, 273, 111176. https://doi.org/10.1016/j.jenvman.2020.111176.
Tarnawski M. & Baran A. 2018. Use of chemical indicators and bioassays in bottom sediment ecological risk assessment. Ar-chives of Environmental Contamination and Toxicology, 74(3), 395–407. https://doi.org/10.1007/s00244-018-0513-2.
Tavakoly Sany S.B., Salleh A., Sulaiman A.H., Sasekumar A., Tehrani G. & Rezayi M., 2012. Distribution characteristics and Ecological Risk of heavy metals in surface sediments of west port, Malaysia. Environment Protection Engineering, 38(4), 139–155.
Tytła M. & Kostecki M., 2019. Ecological risk assessment of metals and metalloid in bottom sediments of water reservoir lo-cated in the key anthropogenic “hot spot” area (Poland). Environmental Earth Sciences, 78(5), 179. https://doi.org/10.1007/s12665-019-8146-y.
Vignati D.A.L., Ferrari B.J.D., Roulier J.L., Coquery M., Szalinska E., Bobrowski A., Czaplicka A. et al., 2019. Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 1: Understanding chromium accumulation by in-digenous chironomids. Science of the Total Environment, 653, 401–408. https://doi.org/10.1016/j.scitotenv.2018.10.259.
Wadhia K. & Thompson K.C., 2007. Low-cost ecotoxicity testing of environmental samples using microbiotests for potential implementation of the Water Framework Directive. TrAC Trends in Analytical Chemistry, 26(4), 300–307. https://doi.org/10.1016/j.trac.2007.01.011.
Wieczorek J., Baran A., Urbański K., Mazurek R. & Klimowicz-Pawlas A., 2018. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environmental Geochemistry and Health, 40(6), 2325–2342. https://doi.org/10.1007/s10653-018-0100-5.
Zawisza E., Michalec B., Gruchot A., Tarnawski M., Baran A., Cholewa M., Koś K. & Koniarz T., 2014. Uwarunkowania tech-niczne rewitalizacji zbiornika wodnego Chechło w gminie Trzebinia: monografia. Wydawnictwo Uniwersytetu Rolniczego, Kraków.
Zhou Ch., Gaulier C., Luo M., Guo W., Baeyens W. & Gao Y., 2020. Fine scale measurements in Belgian coastal sediments reveal different mobilization mechanisms for cationic trace metals and oxyanions. Environment International, 145, 106140. https://doi.org/10.1016/j.envint.2020.106140.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)