The application of the germination index in the assessment of the phytotoxicity of bottom sediments from the Rybnik Reservoir

Authors

  • Magdalena Szara Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Polnad
  • Agnieszka Baran Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Polnad
  • Marek Tarnawski Department of Hydraulic Engineering and Geotechnics, University of Agriculture in Krakow,Poland
  • Tomasz Koniarz Department of Hydraulic Engineering and Geotechnics, University of Agriculture in Krakow,Poland

DOI:

https://doi.org/10.7494/geol.2017.43.4.327

Abstract

The aims of the study were to assess the phytoxicity of bottom sediments collected from the Rybnik Reservoir. The water reservoir in Rybnik is located in the Silesian Voivodeship. The reservoir constitutes a part of the technological chain of Elektrownia Rybnik S.A. as a direct receiver of industrial and rainwater sewage, sewage from a water treatment plant, blowdowns from cooling towers, and as an essential source of cooling water. Sediment samples were collected with an Eckman sampler from 33 locations. The toxicity of bottom sediments was determined using the Phytotoxkit direct contact test, carried out for 3 plants: Sorghum saccharatum, Sinapis alba and Lepidium sativum. On the basis of the data received, the germination index (GI) was calculated. We found the mean value of the germination index indicated the dominance of the inhibitory effect of bottom sediments on plant growth. Sorghum saccharatum was the most sensitive to pollutants in sediments, while Lepidium sativum was the least sensitive. The Phytotoxkit is a good tool for assessing the toxicity of bottom sediments.

Downloads

Download data is not yet available.

References

Aleksander-Kwaterczak U., 2007. Rozmieszczenie metali śladowych w rdzeniach osadów wybranych rzek Polski. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.

Baran A. & Tarnawski M., 2013. Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments. Ecotoxicology and Environmental Safety, 98, 19–27.

Baran A. & Tarnawski M., 2015. Assessment of heavy metals mobility and toxicity in contaminated sediments by sequential extraction and a battery of bioassays. Ecotoxicology, 24, 6, 1279–1293.

Baran A., Tarnawski M. & Koniarz T., 2016. Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland. Environmental Science and Pollution Research, 23, 17, 17255–17268.

Baran A., Tarnawski M., Urbański K., Klimkowicz-Pawlas A. & Spałek I., 2017. Concentration, sources and risk assessment of PAHs in bottom sediments. Environmental Science and Pollution Research, 24, 29, 23180–23195.

Beltrami M., Rossi D. & Baudo R., 1999. Phytotoxicity assessment of lake Orta sediments. Aquatic Ecosystem Health, 2, 391–401.

Ciszewski D., Aleksander-Kwaterczak U., Pociecha A., Szarek-Gwiazda E., Waloszek A. & Wilk-Woźniak E., 2013. Small effects of a large sediment contamination with heavy metals on aquatic organisms in the vicinity of an abandoned lead and zinc mine. Environmental Monitoring and Assessment, 185, 12, 9825–9842.

Czerniawska-Kusza I. & Kusza G., 2011. The potential of the Phytotoxkit microbiotest for hazard evaluation of sediments in eutrophic freshwater ecosystems. Environmental Monitoring and Assessment, 179, 113–121.

Czerniawska-Kusza I., Ciesielczuk T., Kusza G. & Cichon A., 2006. Comparison of the Phytotoxkit microbiotest and chemical variables for toxicity evaluation of sediments. Environmental Toxicology, 378, 367–372.

Dmitruk U., Jancewicz A. & Tomczuk U., 2013. Hazardous organic and trace element occurrence in bottom sediments of dam reservoirs. Environmental Pollution Control, 35, 2, 63–68.

Förstner U. & Salomons W., 2010. Sediment research, management and police. Journal of Soils and Sediments, 10, 1440–1452.

Garcia-Lorenzo M.L., Martinez-Sanchez M.J., Perez-Sirvent C. & Molina J., 2009. Ecotoxicological evaluation for the screening of areas polluted by mining activities. Ecotoxicology, 18, 1077–1086.

Gong P., Wilke BM., Strozzi E. & Fleischmann S., 2001. Evaluation and refinement of a continuous seed germination and early seedling comparison of the Phytotoxkit microbiotest and chemical variables. Environmental Toxicology. Chemosphere, 44, 491–500.

ISO 18763:2016: Soil quality – Determination of the toxic effects of pollutants on germination and early growth of higher plants.

Jancewicz A., Dmitruk U., Sośnicki Ł., Tomczuk U. & Bartczak A., 2012. Influence of land development in the drainage area on bottom sediment quality in some dam reservoirs. Environmental Pollution Control, 34, 29–34.

Jasiewicz Cz. & Baran A., 2006. Characteristics of bottom sediments of two reservoirs of small water retention. Journal of Elementology, 11, 3, 307–317.

Kabata-Pendias A. & Pendias H., 1999. Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa.

Kostecki M. & Kowalski E., 2004. Alokacja metali ciężkich w osadach dennych zbiornika rybnickiego. Archiwum Ochrony Środowiska, 30, 4, 53–62.

Kostecki M., 2004. Wpływ antropopresji na kształtowanie się układów termicznych w Rybnickim Zbiorniku zaporowym. Archiwum Ochrony Środowiska, 30, 4, 41–52.

Łaszczyca P., Francikowski J., Guzik J., Nikiel A., Kłosok M., Michalczyk K., Augustyniak M. & Migula P., 2012. Przydatność biotestów ekotoksykologicznych do oceny stanu biologicznego wód na przykładzie zbiornika zaporowego w goczałkowicach. Kosmos, 61, 3, 381–392.

Latif M. & Licek E., 2004. Toxicity assessment of wastewaters, river water and sediments in Austria using cost -effective microbiotests. Environmental Toxicology, 19, 4, 302–309.

Lopez-Roldan R., Kazlauskaite L., Ribo J., Riva M.C., Gonzalez S. & Cortina J.L., 2012. Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Science of the Total Environment, 440, 307–313.

Mamindy-Pajany Y., Hamer B., Roméo M., Géret F., Galgani F., Durmisi E., Hurel C. & Marmier N., 2011. The toxicity of composted sediments from Mediterranean ports evaluated by several bioassays. Chemosphere, 83, 3, 362–369.

Mankiewicz-Boczek J., Nałęcz-Jawecki G., Drobniewska A., Kaza M., Sumorok B., Izydorczyk K., Zalewski M. & Sawicki J., 2008. Application of microbiotest battery for complete toxicity assessment of rivers. Ecotoxicology and Environmental Safety, 71, 830–836.

Oleszczuk P., 2008. The toxicity of composts from sewage sludges evaluated by the directcontact tests Phytotoxkit and Ostracodtoxkit. Waste Management, 28, 1645–1653.

Phytotoxkit, 2004. Seed germination and early growth microbiotest with higher plants. Standard Operational Procedure. MicroBioTest Inc, Nazareth, Belgium.

Simeonov V., Wolska L., Kuczyńska A., Gurwin J., Tasakovki S., Protasowicki M. & Namieśnik J. 2007. Sediement-quality assessment by intelligent data analysis. TrAC Trends in Analytical Chemistry, 26(4), 323–331. DOI: 10.1016/j.trac.2006.12.004.

Smreczak B. & Maliszewska-Kordybach B., 2003. Seeds germination and root growth of selectedplants in PAH contaminated soil. Fresenius Environmental Bulletin, 12, 946–949.

Stan środowiska 2016. Stan środowiska w województwie śląskim w roku 2015. Biblioteka Monitoringu Środowiska, Wojewódzki Inspektorat Ochrony Środowiska, Katowice 2016.

Szalińska E., 2011. Rola osadów dennych w ocenie jakości środowiska wód kontynentalnych. Monografia – Politechnika Krakowska im. Tadeusza Kościuszki 396, Wydawnictwo Politechniki Krakowskiej, Kraków.

Szarek-Gwiazda E., 2013. Czynniki kształtujące stężenia metali ciężkich w rzece Rabie i niektórych karpackich zbiornikach zaporowych. Studia Nature, 60, Instytut Ochrony Przyrody PAN, Kraków.

Tarnawski M. & Michalec B., 2006. Charakterystyka ilościowa i jakościowa osadów dennych zbiornika wodnego w Wilczej Woli. Infrastruktura i Ekologia Terenów Wiejskich, 3, 1, 31–43.

Urbaniak M., Zieliński M., Kaczkowski Z. & Zalewski M., 2013. Spatial distribution of PCDDs, PCDFs and dl-PCBs along the cascade of urban reservoirs. Hydrology Research, 44, 4, 614–630.

Valerio M.E., Garcia J.F. & Peinado F.M., 2007. Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Science of the Total Environment, 378, 63–66.

Wadhia K. & Thompson K.C., 2007. Low-cost ecotoxicity testing of environmental samples using microbiotests for potential implementation of the Water Framework Directive. Trends in Analytical Chemistry, 26, 300–307.

Wiechuła I., Loska K. & Korus I., 2005. Lead partitioning in the bottom sediment of Rybnik reservoir (Southern Poland). Water Air and Soil Pollution, 164, 1, 315–327.

Wolska L., Sagajdakowa A., Kuczyńska A. & Namieśnik J., 2007. Application of ecotoxicological studies in integrated environmental monitoring: Possibilities and problems. TrAC Trends in Analytical Chemistry, 26, 4, 332–344.

Downloads

Published

2018-04-14

Issue

Section

Articles

How to Cite

Szara, M., Baran, A., Tarnawski, M., & Koniarz, T. (2018). The application of the germination index in the assessment of the phytotoxicity of bottom sediments from the Rybnik Reservoir. Geology, Geophysics and Environment, 43(4), 327. https://doi.org/10.7494/geol.2017.43.4.327

Most read articles by the same author(s)