Variability factors of 40K radionuclide origin in meteorites

Authors

DOI:

https://doi.org/10.7494/geol.2025.51.3.225

Keywords:

radiation, cosmic rays, nuclei, meteorites, statistics, primordial nucleosynthesis

Abstract

This study confirms the theory of the variability of the origin of radioactive potassium in various  meteorite classes, generated from the dynamic nucleosynthesis (primordial) process, and other processes induced by the solar/cosmic-radiation activation or fractionation caused by the impact vaporization mechanism. High-precision radioactive 40K analysis confirms the differences between various types of meteorites. The concentrations of potassium change from 0.50 ±0.02 Bq/kg (NWA 15015, mesosiderite) to 26.2 ±1.2 Bq/kg (Chelyabinsk, LL chondrite) i.e. three orders of magnitude. All radiometric measurements have been made using a low-background gamma spectrometry system. Additionally, a set of common minerals – Fa (fayalite in olivine), Fs (ferrosilite), and Wo (wollastonite in pyroxenes) – was applied (MetBase n.d.). For the radionuclides factor variability, the principal component analysis (PCA) for the chemometric analysis has been applied. Two factors of the 40K variability have been identified, described, and explained. In this study, PCA was applied for the interpretation of the 40K potassium origin sources in 32 meteorite specimens, represent various groups and classes of meteorites.
Two significant PCA factors of variability have been identified, PC1 (51.04%) and PC2 (30.68%), assigned as an activation process by cosmic radiation exposure and a nucleosynthesis mechanism (primordial), respectively.

Downloads

Download data is not yet available.

References

Albarède F., 2009. Geochemistry: An Introduction. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511807435.

Alexander C.M.O’D., Boss A.P. & Carlson R.W., 2001. The early evolution of the inner solar system: A meteoritic perspective. Sci-ence, 293(5527), 64–68. https://doi.org/10.1126/science.1052872.

Ammon K., Masarik J. & Leya I., 2009. New model calculations for the production rates of cosmogenic nuclides in iron meteorites. Meteoritics & Planetary Science, 44(4), 485–503. https://doi.org/10.1111/j.1945-5100.2009.tb00746.x.

Atwood D.A. (ed.), 2010. Radionuclides in the Environment. Wiley, UK.

Barr A.C., 2016. On the origin of Earth’s Moon. Journal of Geophysical Research: Planets, 121, 1573–1601. https://doi.org/10.1002/2016JE005098.

Bloom H., Lodders K., Chen H., Zhao C., Tian Z., Koefoed P., Pető M.K., Jiang Y. & Wang K., 2020. Potassium isotope compositions of carbonaceous and ordinary chondrites: Implications on the origin of volatile depletion in the early solar system. Geochimica et Cosmochimica Acta, 277, 111–131. https://doi.org/10.1016/j.gca.2020.03.018.

Bogard D., Burnett D., Eberhardt P. & Wasserburg G.J., 1967. 40Ar–40K ages of silicate inclusions in iron meteorites. Earth and Plan-etary Science Letters, 3, 275–283. https://doi.org/10.1016/0012-821X(67)90048-9.

Burnett D.S., Lippolt H.J. & Wasserburg G.J., 1966. The relative isotopic abundance of 40K in terrestrial and meteoritic samples. Jour-nal of Geophysical Research, 71(4), 1249–1269. https://doi.org/10.1029/JZ071i004p01249.

Ciesla F.J., 2008. Radial transport in the solar nebula: Implications for moderately volatile element depletions in chondritic meteorites. Meteoritics & Planetary Science, 43, 639–655. https://doi.org/10.1111/j.1945-5100.2008.tb00675.x.

Clayton D., 2003. Handbook of Isotope in the Cosmos: Hydrogen to Gallium. Cambridge University Press, New York.

Curry A., Bonsor A., Lichtenberg T., Shorttle O., 2022. Prevalence of short-lived radioactive isotopes across exoplanetary systems inferred from polluted white dwarfs. Monthly Notices of the Royal Astronomical Society, 515(1), 395–406. https://doi.org/10.1093/mnras/stac1709.

Dauphas N., Hopp T. & Nesvorný D., 2024. Bayesian inference on the isotopic building blocks of Mars and Earth. Icarus, 408, 115805. https://doi.org/10.1016/j.icarus.2023.115805.

David J.-C., Leya I., 2019. Spallation, cosmic rays, meteorites, and planetology. Progress in Particle and Nuclear Physics, 109, 103711. https://doi.org/10.1016/j.ppnp.2019.103711.

Długosz-Lisiecka M., 2016. Comparison of two spectrometric counting modes for fast analysis of selected radionuclides activity. Jour-nal of Radioanalytical and Nuclear Chemistry, 309(2), 941–945. https://doi.org/10.1007/s10967-015-4688-y.

Długosz-Lisiecka M., 2017. Application of modern anticoincidence (AC) system in HPGe γ-spectrometry for the detection limit lower-ing of the radionuclides in air filters. Journal of Environmental Radioactivity, 169–170, 104–108. https://doi.org/10.1016/j.jenvrad.2017.01.008.

Długosz-Lisiecka M., 2019. Chemometric methods for source apportionment of 210Pb, 210Bi and 210Po for 10 years of urban air radioactivity monitoring in Łódź city, Poland. Chemosphere, 220, 163–168. https://doi.org/10.1016/j.chemosphere.2018.12.042.

Długosz-Lisiecka M., Jakubowski T., Krystek M. & El Mallul A., 2022. Radioactive isotopes as a tool for pairing identification of the HAH 346 – Hammadah al Hamra 346 – ordinary chondrites from two separate find areas. Minerals, 12(12), 1553. https://doi.org/10.3390/min12121553.

Erkaev N.V., Scherf M., Herbort O., Lammer H., Odert P., Kubyshkina D., Leitzinger M., Woitke P. & O’Neill C., 2023. Modification of the radioactive heat budget of Earth-like exoplanets by the loss of primordial atmospheres. Monthly Notices of the Royal Astro-nomical Society, 518(3), 3703–3721. https://doi.org/10.1093/mnras/stac3168.

Eugster O., Herzog G.F., Marti K. & Caffee M.W., 2006. Irradiation records, cosmic-ray exposure ages, and transfer times of meteor-ites. [in:]. Lauretta D.S & McSween H.Y. Jr. (eds.), Meteorites and the Early Solar System II, University of Arizona Press, Tuc-son, 829–851.

EXFOR (IAEA), n.d., Experimental Nuclear Reaction Data (EXFOR) Database Version of 2018. https://www-nds.iaea.org/exfor/ [access: 22.02.2022].

Fegley B., Jr, Jacobson N.S., Williams K.B., Plane J.M., Schaefer L. & Lodders K., 2016. Solubility of rock in steam atmospheres of planets. Astrophysical Journal, 824(2), 103. https://doi.org/10.3847/0004-637X/824/2/103.

Fischer T., Guo G., Langanke K., Martínez-Pinedo G., Qian Y.-Z. & Wu M.-R., 2024. Neutrinos and nucleosynthesis of elements. Progress in Particle and Nuclear Physics, 137, 104107. https://doi.org/10.1016/j.ppnp.2024.104107.

Flynn G.J., Consolmagno G.J., Brown P. & Macke R.J., 2018. Physical properties of the stone meteorites: Implications for the proper-ties of their parent bodies. Geochemistry, 78(3), 269–298. https://doi.org/10.1016/j.chemer.2017.04.002.

Frizzell K.R., Ojha L. & Karunatillake S., 2023. Bounding the unknowns of Martian crustal heat flow from a synthesis of regional geochemistry and InSight mission data. Icarus, 405, 115700. https://doi.org/10.1016/j.icarus.2023.11570.

Gastis P., Perdikakis G., Dissanayake J., Tsintari P., Sultana I., Brune C.R., Massey T.N., Meisel Z., Voinov A.V., Brandenburg K., Danley T., Giri R., Jones-Alberty Y., Paneru S., Soltesz D. & Subedi S., 2020. Constraining the destruction rate of ⁴⁰K in stellar nucleosynthesis through the study of the ⁴⁰Ar(p, n)⁴⁰K reaction. Physical Review C, 101, 055805. https://doi.org/10.1103/PhysRevC.101.055805.

Goriely S. & Martínez Pinedo G., 2015. The production of transuranium elements by the r-process nucleosynthesis. Nuclear Physics A, 944, 158–176. https://doi.org/10.1016/j.nuclphysa.2015.07.020.

Hampel W. & Schaeffer O.A., 1979. 26Al in iron meteorites and the constancy of cosmic ray intensity in the past. Earth and Planetary Science Letters, 42(3), 348–358. https://doi.org/10.1016/0012-821X(79)90043-8.

Herzog G.F., 2007. Cosmic-ray exposure ages of meteorites. [in:] Holland H.D. & Turekian K.K. (eds.), Treatise on Geochemistry. Volume 1: Meteorites, Comets, and Planets, Pergamon, 1–36. https://doi.org/10.1016/B0-08-043751-6/01069-0.

Herzog G.F., Moynier F., Albarède F. & Berezhnoy A.A., 2009. Isotopic and elemental abundances of copper and zinc in lunar sam-ples, Zagami, Pele’s hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta, 73(19), 5884–5904. https://doi.org/10.1016/j.gca.2009.05.067.

Hin R.C., Coath C.D., Carter P.J., Nimmo F., Lai Y.J., Pogge von Strandmann P.A.E., Willbold M., Leinhardt Z.M., Walter M.J. & Elliott T., 2017. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature, 549(7673), 511–515. https://doi.org/10.1038/nature23899.

Hrynkiewicz A.Z. (red.), 2001. Człowiek i promieniowanie jonizujące [Man and ionizing radiation]. Wydawnictwo Naukowe PWN, Warszawa.

Hu Y., Moynier F., Dai W., Paquet M., Yokoyama T., Abe Y., Aléon J., Alexander C.M.O’D., Amari S., Amelin Y., Bajo K., Biz-zarro M., Bouvier A., Carlson R.W., Chaussidon M., Choi B.-G., Dauphas N., Davis A.M., Di Rocco T., Fujiya W., …, Yurimoto H., 2024. Pervasive aqueous alteration in the early Solar System revealed by potassium isotopic variations in Ryugu samples and carbonaceous chondrites. Icarus, 409, 115884. https://doi.org/10.1016/j.icarus.2023.115884.

Huang T.-Y., Teng F.-Z., Wang Z.-Z., He Y.-S., Liu Z.-C. & Wu F.-Y., 2023. Potassium isotope fractionation during granitic magmatic differentiation: Mineral-pair perspectives. Geochimica et Cosmochimica Acta, 343, 196–211. https://doi.org/10.1016/j.gca.2022.11.006.

Hubbard A., 2016. Generating potassium abundance variations in the Solar Nebula. Monthly Notices of the Royal Astronomical Society, 460(2), 1163–1172. https://doi.org/10.1093/mnras/stw1005

Huss G.R., 2004. Implications of isotopic anomalies and presolar grains for the formation of the solar system. Antarctic Meteorite Research, 17, 132. https://ui.adsabs.harvard.edu/abs/2004AMR....17..132H/abstract.

Huss G.R., Meshik A.P., Smith J.B. & Hohenberg C.M., 2003. Presolar diamond, silicon carbide, and graphite in carbonaceous chon-drites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67(24), 4823–4848. https://doi.org/10.1016/j.gca.2003.07.019.

Jaumann R., Hiesinger H., Anand M., Crawford I.A., Wagner R., Sohl F., Jolliff B.L., Scholten F., Knapmeyer M., Hoffmann H., Hussmann H., Grott M., Hempel S., Köhler U., Krohn K., Schmitz N., Carpenter J., Wieczorek M., Spohn T., Robinson M.S. & Oberst J., 2012. Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planetary and Space Sci-ence, 74, 15–41. https://doi.org/10.1016/j.pss.2012.08.019.

Kato C., Moynier F., Valdes M., Dhaliwal J.K. & Day J.M.D., 2015. Extensive volatile loss during formation and differentiation of the Moon. Nature Communications, 6, 7617. https://doi.org/10.1038/ncomms8617.

Korda D., Penttilä A., Klami A. & Kohout T., 2023. Neural network for determining an asteroid mineral composition from reflectance spectra. Astronomy & Astrophysics, 669, A101. https://doi.org/10.1051/0004-6361/202243886.

Ku Y. & Jacobsen B., 2020. Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud. Science Advanc-es, 6, eabd0511. https://doi.org/10.1126/sciadv.abd0511.

Kun M., Wang S.B. & Jacobsen S.B., 2016. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature Letters, 538, 487–490. https://doi.org/10.1038/nature19341.

Lawson T.V., Pignatari M., Stancliffe R.J., den Hartogh J., Jones S., Fryer C.L., Gibson B.K. & Lugaro M., 2022. Radioactive nuclei in the early Solar System: analysis of the 15 isotopes produced by core-collapse supernovae. Monthly Notices of the Royal Astro-nomical Society, 511(1), 886–902. https://doi.org/10.1093/mnras/stab3684.

Li W., Li S. & Beard B.L., 2019. Geological cycling of potassium and the K isotopic response: Insights from loess and shales. Acta Geochimica, 38, 508–516. https://doi.org/10.1007/s11631-019-00345-X.

Lock S.J., Stewart S.T., Petaev M.I., Leinhardt Z., Mace M.T., Jacobsen S.B. & Ćuk M., 2018. The origin of the Moon within a terres-trial synestia. Journal of Geophysical Research: Planets, 123, 910–951. https://doi.org/10.1002/2017JE005333.

Lodders K. & Fegley B., 1998. The Planetary Scientist’s Companion. Oxford University Press, New York.

Lugaro M., Ott U. & Kereszturi Á., 2018. Radioactive nuclei from cosmochronology to habitability. Progress in Particle and Nuclear Physics, 102, 1–47. https://doi.org/10.1016/j.ppnp.2018.05.002.

Marshall R.R., 1962. Cosmic radiation and the K⁴⁰–Ar⁴⁰ “ages” of iron meteorites. Geochimica et Cosmochimica Acta, 26(10), 981–992. https://doi.org/10.1016/0016-7037(62)90022-4.

Marshall R.R., 1968. Lead–lead age of the Bondoc meteorite. Geochimica et Cosmochimica Acta, 32(9), 1013–1018. https://doi.org/10.1016/0016-7037(68)90065-3.

Mayer C., 2012. Lunar Sample Compendium. Astromaterials Research & Exploration Science (ARES), NASA. https://curator.jsc.nasa.gov/lunar/lsc/index.cfm [access 22.02.2022].

MBD Meteoritical Bulletin Database, n.d. https://www.lpi.usra.edu/meteor/ [access: 1.07.2023].

MetBase, n.d. https://metbase.org/ [access: 1.07.2023].

Millero F.J., 2014. Physico-chemical controls on seawater. [in:] Holland H.D. & Turekian K.K. (eds.), Treatise on Geochemistry. Volume 8: The Oceans and Marine Geochemistry, 2nd ed., Elsevier Science, Amsterdam, Netherlands, 1–18. https://doi.org/10.1016/B978-0-08-095975-7.00601-X.

Napolitani P, Schmidt K.-H., Botvina A.S., Rejmund F., Tassan-Got L. & Villagrasa C., 2004. High-resolution velocity measurements on fully identified light nuclides produced in 56Fe + hydrogen and 56Fe + titanium systems. Physical Review. Part C: Nuclear Phys-ics, 70, 054607. https://doi.org/10.1103/PhysRevC.70.054607 NSR:2004NA36.

NDS Nuclear Data Services (IAEA), n.d. https://www-nds.iaea.org/ [access: 22.02.2022].

Nie N.X., Chen X.-Y., Hopp T., Hu J.Y., Zhang Z.J., Teng F.-Z., Shahar A. & Dauphas N., 2021. Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites. Science Advances, 7(49), eabl3929. https://doi.org/10.1126/sciadv.abl3929.

Nie N.X., Chen X.-Y., Zhang Z.J., Hu J.Y., Liu W., Tissot F.L.H., Teng F.-Z., Shahar A. & Dauphas N., 2023a. Rubidium and potas-sium isotopic variations in chondrites and Mars: Accretion signatures and planetary overprints. Geochimica et Cosmochimica Acta, 344, 207–229. https://doi.org/10.1016/j.gca.2023.01.004.

Nie N.X., Wang D., Torrano Z.A., Carlson R.W., Alexander C.M.O’D, Shahar A., 2023b. Meteorites have inherited nucleosynthetic anomalies of potassium-40 produced in supernovae. Science, 379(6630), 372–376. https://doi.org/10.1126/science.abn1783.

Otuka N., Dupont E., Semkova V., Pritychenko B., Blokhin A.I., Aikawa M., Babykina S., Bossant M., Chen G., Dunaeva S., Forrest R.A., Fukahori T., Furutachi N., Ganesan S., Ge Z., Gritzay O.O., Herman M., Hlavač S., Katō K., Lalremruata B., …, Zhuang Y., 2014. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration be-tween Nuclear Reaction Data Centres (NRDC). Nuclear Data Sheets, 120, 272–276. https://doi.org/10.1016/j.nds.2014.07.065.

Palme H., Lodders K. & Jones A., 2014. Solar system abundances of the elements. [in:] Holland H.D. & Turekian K.K. (eds.), Treatise on Geochemistry. Volume 2: Planets, Asteriods, Comets and the Solar System, 2nd ed., Elsevier Science, Amsterdam, Netherlands, 15–36. https://doi.org/10.1016/B978-0-08-095975-7.00118-2.

Paniello R.C., Moynier F., Beck P., Barrat J.-A., Podosek F.A. & Pichat S., 2012. Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochimica et Cosmochimica Acta, 86, 76–87. https://doi.org/10.1016/j.gca.2012.01.045.

Polański A., 1988. Podstawy geochemii. Wydawnictwa Geologiczne, Warszawa.

Povinec P.P., Masarik J., Sýkora I., Kováčik A., Beňo J., Meier M.M.M., Wieler R., Laubenstein M. & Porubčan V., 2015. Cosmo-genic nuclides in the Košice meteorite: Experimental investigations and Monte Carlo simulations. Meteoritics & Planetary Science, 50, 880–892. https://doi.org/10.1111/maps.12380.

Povinec P.P., Sýkora I., Macke R.J., Tóth J., Kornoš L. & Porubčan V., 2020. Radionuclides in Chassigny and Nakhla meteorites of Mars origin: Implications for their pre-atmospheric sizes and cosmic-ray exposure ages. Planetary and Space Science, 186, 104914. https://doi.org/10.1016/j.pss.2020.104914.

Przylibski T.A., Długosz-Lisiecka M., Łuszczek K. & Blutstein K., 2023. Results of statistical analysis of primary components concen-trations in bulk chemical composition of ordinary chondrite groups. Meteoritics & Planetary Science, 58(9), 1246–1259. https://doi.org/10.1111/maps.14050.

Roland J., Debaille V., Pourkhorsandi H. & Goderis S., 2024. Moderately volatile elemental and isotopic variations in variably shocked equilibrated ordinary chondrites from Antarctica. Icarus, 412, 115983. https://doi.org/10.1016/j.icarus.2024.115983.

Rosborough S.A., Oliversen R.J., Mierkiewicz E.J., Sarantos M., Robertson S.D., Kuruppuaratchi D.C., Derr N.J., Gallant M.A. & Roesler F.L., 2019. High-resolution potassium observations of the lunar exosphere. Geophysical Research Letters, 46(12), 6964–6971. https://doi.org/10.1029/2019GL083022.

Saunier G., Poitrasson F., Moine B., Gregoire M. & Seddiki A., 2010. Effect of hot desert weathering on the bulk-rock iron isotope composition of L6 and H5 ordinary chondrites. Meteoritics & Planetary Science, 45(2), 195–209. https://doi.org/10.1111/j.1945-5100.2010.01017.x.

Steller T., Burkhardt C., Yang C. & Kleine T., 2022. Nucleosynthetic zinc isotope anomalies reveal a dual origin of terrestrial volatiles. Icarus, 386, 115171. https://doi.org/10.1016/j.icarus.2022.115171.

Taylor S.R. & McLennan S.M., 2012. [Review of the book Planetary crusts: Their composition, origin and evolution, by S.R. Taylor & S.M. McLennan]. Contemporary Physics, 53(4), 370–371. https://doi.org/10.1080/00107514.2012.672469.

Tian Z., Chen H., Fegley B., Lodders K., Barrat J.-A., Day J.M.D. & Wang K., 2019. Potassium isotopic compositions of howard-iteeucritediogenite meteorites. Geochimica et Cosmochimica Acta, 266, 611–632. https://doi.org/10.1016/j.gca.2019.08.012.

Varnam M., Hamilton C.W., Aleinov I., Barnes J.J., 2024. Composition and speciation of volcanic volatiles on the Moon. Icarus, 413, 116009. https://doi.org/10.1016/j.icarus.2024.116009.

Vasini A., Matteucci F. & Spitoni E., 2022. Chemical evolution of 26Al and 60Fe in the Milky Way. Monthly Notices of the Royal As-tronomical Society, 517(3), 4256–4264. https://doi.org/10.1093/mnras/stac2981.

Voshage H., Feldmann H., Braun O., 1983. Investigations of cosmic-ray-produced nuclides in iron meteorites: 5. More data on the nuclides of potassium and noble gases, on exposure ages and meteoroid sizes. Zeitschrift für Naturforschung, 38(2), 273–280. https://doi.org/10.1515/zna-1983-0227.

Voskresensky D.N., 2023. Structure formation during phase transitions in strongly interacting matter. Progress in Particle and Nuclear Physics, 130, 104030. https://doi.org/10.1016/j.ppnp.2023.104030.

Wang K., Li W., Li S., Tian Z., Koefoed P., Zheng X.-Y., 2021. Geochemistry and cosmochemistry of potassium stable isotopes. Geo-chemistry, 81(3), 125786. https://doi.org/10.1016/j.chemer.2021.125786.

Yin Q., 2005. From dust to planets: The tale told by moderately volatile elements. [in:] Krot A.N., Scott E.R.D. & Reipurth B. (eds.), Chondrites and the Protoplanetary Disk: Proceedings of a Workshop Held at the Radisson Kaua’i Beach Resort, Kaua’i, Hawai’i, 8–11 November 2004, ASP Conference Series, 341, Astronomical Society of the Pacific, San Francisco, 632–644.

Zerkin V.V. & Pritychenko B., 2018. The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 31–43. https://doi.org/10.1016/j.nima.2018.01.045.

Zhao C., Lodders K., Bloom H., Chen H., Tian Z., Koefoed P., Pető M.K. & Wang K., 2019. Potassium isotopic compositions of ensta-tite meteorites. Meteoritics & Planetary Science, 55(6), 1404–1417. https://doi.org/10.1111/maps.13358.

Downloads

Published

2025-08-10

Issue

Section

Articles

How to Cite

Długosz-Lisiecka, M., Przylibski, T. A., & Łuszczek, K. (2025). Variability factors of 40K radionuclide origin in meteorites. Geology, Geophysics and Environment, 51(3), 225–242. https://doi.org/10.7494/geol.2025.51.3.225