Alpha particle distribution and uranium mechanisms of accumulation in fossilised shells of ammonites and bivalves
DOI:
https://doi.org/10.7494/geol.2025.51.1.89Keywords:
uranium, alpha emitters, fossil record, fossilization, phosphatization, radioactivityAbstract
The uranium concentration and distribution in fossils (ammonite and bivalve specimens) were studied. Fossil samples were cut perpendicularly and thin sections were prepared. The chemical and mineralogical compositions of fossils were analysed using scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The distribution of alpha emitters in the area of fossils was registered using CR-39 detectors. Alpha particle emitters were almost evenly distributed in all analysed fossils. We do not observe tracks concentrated in specific regions, which may indicate the absence of highly radioactive mineral grains. The uniformly distributed alpha tracks correlated with areas of mineral composition dominated by apatite, Ca5(PO4)3(Cl/F/OH). The correlation between phosphorous content and alpha tracks suggests that this element was crucial in absorbing radionuclides, presumably uranium or other alpha particle emitters, uranium progenies. However, upon analysing the chemical composition on thin sections of fossils, uranium was not detected, likely due to its concentrations being below the detection limits of EDS. Areas on the thin sections devoid of alpha tracks on CR-39 detectors were associated with empty voids in thin sections, ooids partially composed of FeS2 (pyrite framboids) or iron oxides F2O3 (hematite), phosphorus-free regions, or other areas where crushed fragments of shells composed of calcium carbonate (aragonite) partially filled internal casts. The interaction of elements presented in fossil structures with uranium can depend on various factors, such as the pH of the pore fluids, redox conditions, and the specific mineralogy of the sediments. Our research indicates that the increased radioactivity registered in some fossils is connected with phosphorous content. Small amounts of uranium are disseminated in calcium phosphate (various apatite forms). The uranium concentrations smaller than the detection limit of EDS can be successfully registered using passive track detectors.
Downloads
References
Aydaş C., Engin B., Kapan S., Komut T., Aydın T. & Paksu U., 2015. Dose estimation, kinetics and dating of fossil marine mollusc shells from northwestern part of Turkey. Applied Radiation and Isotopes, 105, 72–79. https://doi.org/10.1016/j.apradiso.2015.07.053.
Boukhenfouf W. & Boucenna A., 2012. Uranium content and dose assessment for phosphate fertiliser and soil samples: Comparison of uranium concentration between virgin soil and fertilised soil. Radiation Protection Dosimetry, 148(2), 263–267. https://doi.org/10.1093/rpd/ncr025.
Bruneton P., Cuney M., Dahlkamp F. & Zaluski G., 2014. IAEA geological classification of uranium deposits. [in:] Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2014). Summary of an International Symposium. Companion CD-ROM, International Atomic Energy Agency, Vienna, 8–18. https://inis.iaea.org/records/78nxt-9zr16.
Cid A.S., Anjos R.M., Zamboni C.B., Cardoso R., Muniz M., Corona A., Valladares D.L., Kovacs L., Macario K., Perea D., Goso C. & Velasco H., 2014. Na, K, Ca, Mg, and U-series in fossil bone and the proposal of a radial diffusion-adsorption model of uranium uptake. Journal of Environmental Radioactivity, 136, 131–139. https://doi.org/10.1016/j.jenvrad.2014.05.018.
Clarkson M.O., Sweere T.C., Chiu C.F., Hennekam R., Bowyer F. & Wood R.A., 2023. Environmental controls on very high δ238U values in reducing sediments: Implications for Neoproterozoic seawater records. Earth-Science Reviews, 237, 104306. https://doi.org/10.1016/j.earscirev.2022.104306.
Cole D.B., Planavsky N.J., Longley M., Böning P., Wilkes D., Wang X., Swanner E.D., Wittkop C., Loydell D.K., Busigny V., Knudsen A.C. & Sperling E.A., 2020. Uranium isotope fractionation in non-sulfidic anoxic settings and the global uranium isotope mass balance. Global Biogeochemical Cycles, 34(8), e2020GB006649. https://doi.org/10.1029/2020GB006649.
Constantin C., Popescu I.C., Oprea O. & Stoica L., 2022. U(VI) removal from diluted aqueous systems by sorption-flotation. Scientific Reports, 12(1), 16951. https://doi.org/10.1038/s41598-022-19002-0.
Dahl T.W., Hammarlund E.U., Rasmussen C.M.Ø., Bond D.P.G. & Canfield D.E., 2021. Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions – insights from molybdenum and uranium isotopic global redox proxies. Earth-Science Reviews, 220, 103748. https://doi.org/10.1016/j.earscirev.2021.103748.
Deng T., Chi G., Williams-Jones A.E., Li Z., Wang Y., Xu D. & Wang Z., 2023. Re-evaluation of equilibrium relationships involving U6+/U4+ and Fe3+/Fe2+ in hydrothermal fluids and their implications for U mineralization. Chemical Geology, 625, 121432. https://doi.org/10.1016/j.chemgeo.2023.121432.
Długosz-Lisiecka M., 2016. Comparison of two spectrometric counting modes for fast analysis of selected radionuclides activity. Journal of Radioanalytical and Nuclear Chemistry, 309(2), 941–945. https://doi.org/10.1007/s10967-015-4688-y.
Długosz-Lisiecka M., Tyborowski D. & Krystek M., 2021. Radioactive fossils: The uranium anomaly and its paleobiological implications. Chemosphere, 285, 131444. https://doi.org/10.1016/j.chemosphere.2021.131444.
Hatje V., Schijf J., Johannesson K.H., Andrade R., Caetano M., Brito P., Haley B.A., Lagarde M. & Jeandel C., 2024. The global biogeochemical cycle of the rare earth elements. Global Biogeochemical Cycles, 38(6), e2024GB008125. https://doi.org/10.1029/2024GB008125.
Hu Z. & Gao S., 2008. Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 253(3–4), 205–221. https://doi.org/10.1016/j.chemgeo.2008.05.010.
IAEA, 2009. World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification. IAEA-TECDOC-1629, International Atomic Energy Agency, Vienna.
Jiménez-Arroyo Á., Gabitov R., Migdisov A., Lui J., Strzelecki A., Zhao X., Guo X., Paul V., Mlsna T., Perez-Huerta A., Caporuscio F., Xu H. & Roback R., 2023. Uranium uptake by phosphate minerals at hydrothermal conditions. Chemical Geology, 634, 121581. https://doi.org/10.1016/j.chemgeo.2023.121581.
Koul S.L., 1979. Uranium in fossil bones. Radiation Effects, 43(1), 7–11. https://doi.org/10.1080/00337577908226416.
Lan Z., Wu H. & He H., 2024. Application of different radiogenic isotope systems and cyclostratigraphy in the dating of sedimentary rocks. Earth-Science Reviews, 250, 104695. https://doi.org/10.1016/j.earscirev.2024.104695.
Liu X., Chen X., Tostevin R., Yao H., Han K., Guo H. & Jafarian A., 2021. Post-depositional modification of carbonate ooids by sulfate-reducing bacteria: Evidence from the Lower–Middle Jurassic, Tethyan Himalayas of southern Tibet. Sedimentary Geology, 426, 106027. https://doi.org/10.1016/j.sedgeo.2021.106027.
Livermore B.D., Dahl T.W., Bizzarro M. & Connelly J.N., 2020. Uranium isotope compositions of biogenic carbonates – Implications for U uptake in shells and the application of the paleo-ocean oxygenation proxy. Geochimica et Cosmochimica Acta, 287, 50–64. https://doi.org/10.1016/j.gca.2020.07.005.
Moyo F., Tandlich R., Wilhelmi B.S. & Balaz S., 2014. Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and non-aqueous solutions: A mini-review. International Journal of Environmental Research and Public Health, 11(5), 5020–5048. https://doi.org/10.3390/ijerph110505020.
Mustoe G.E., 2020. Uranium mineralization of fossil wood. Geosciences, 10(4), 133. https://doi.org/10.3390/geosciences10040133.
Ochmann A.A. & Solecki A.T., 2005. CR-39 autoradiographic micromapping of rock sections of various alpha emitters-calibration approach. Journal of Environmental Radioactivity, 79(2), 127–136. https://doi.org/10.1016/j.jenvrad.2004.05.017.
Philipp T., Huittinen N., Shams Aldin Azzam S., Stohr R., Stietz J., Reich T. & Schmeide K., 2022. Effect of Ca(II) on U(VI) and Np(VI) retention on Ca-bentonite and clay minerals at hyperalkaline conditions – New insights from batch sorption experiments and luminescence spectroscopy. Science of The Total Environment, 842, 156837. https://doi.org/10.1016/j.scitotenv.2022.156837.
Rasbury E.T., Piccione G., Holt W. & Ward W.B., 2023. Potential for constraining sequence stratigraphy and cycle stratigraphy with U-Pb dating of carbonates. Earth-Science Reviews, 243, 104495. https://doi.org/10.1016/j.earscirev.2023.104495.
Reynolds H.S., Ram R., Pownceby M.I., Yang Y., Chen M., Tardio J., Jones L. & Bhargava S.K., 2018. Kinetics of uranium extraction from coffinite – A comparison with other common uranium minerals. Transactions of Nonferrous Metals Society of China, 28(10), 2135–2142. https://doi.org/10.1016/S1003-6326(18)64858-7.
Shi Y., He J., Yang X., Zhou W., Wang J., Li X. & Liu C., 2019. Sorption of U(VI) onto natural soils and different mineral compositions: The batch method and spectroscopy analysis. Journal of Environmental Radioactivity, 203, 163–171. https://doi.org/10.1016/j.jenvrad.2019.03.011.
Sinha S., Muscente A.D., Schiffbauer J.D., Willimas M., Schweigert G. & Martindale R.C., 2021. Global controls on phopsphatization of fossils during the Toarcian Oceanic Anoxic Event. Scientific Reports, 11, 24087. https://doi.org/10.1038/s41598-021-03482-7.
Skomurski F.N., Ilton E.S., Engelhard M.H., Arey B.W. & Rosso K.M, 2011. Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment. Geochimica et Cosmochimica Acta, 75(22), 7277–7290. https://doi.org/10.1016/j.gca.2011.08.006.
Slukovskii Z., 2023. Uranium in lake sediments of humid zone: A case study in the Southeast Fennoscandia (Karelia, Russia). Water, 15(7), 1360. https://doi.org/10.3390/w15071360.
Tan X., Wang X., Chen C. & Sun A., 2007. Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. Applied Radiation and Isotopes, 65(4), 375–81. https://doi.org/10.1016/j.apradiso.2006.10.014.
Taylor J.D., Glover E.A., Ball A.D. & Najorka J., 2023. Nanocrystalline fluorapatite mineralization in the calciphile rock-boring bivalve Lithophaga: functional and phylogenetic significance. Biological Journal of the Linnean Society, 138(2), 229–245. https://doi.org/10.1093/biolinnean/blac133.
Trueman C.N. & Tuross N., 2002. Trace elements in recent and fossil bone apatite. Reviews in Mineralogy and Geochemistry, 48(1), 489–521. https://doi.org/10.2138/rmg.2002.48.13.
Wang J., He B., Wei X., Li P., Liang J., Qiang S., Fan Q. & Wu W., 2019. Sorption of uranyl ions on TiO2: Effects of pH, contact time, ionic strength, temperature and HA. Journal of Environmental Sciences, 75(1), 115–123. https://doi.org/10.1016/j.jes.2018.03.010.
Yushkin N.P., Katkova V.I. & Lyyurov S.V., 2011. Mineralogy of fossilized ammonites. Geology of Ore Deposits, 53(8), 745–750. https://doi.org/10.1134/S1075701511080174.
Zatoń M., Rakociński M. & Marynowski L., 2008. Framboidy pirytowe jako wskaźniki paleośrodowiska [Pyrite framboids as paleoenvironmental indicators]. Przegląd Geologiczny, 56(2), 158–164.
Zhang Y.Y., Lv J.W., Dong X.J., Fang Q., Tan W.F., Wu X.Y. & Deng Q.W., 2020. Influence on uranium(VI) migration in soil by iron and manganese salts of humic acid: Mechanism and behavior. Environmental Pollution, 256, 113369. https://doi.org/10.1016/j.envpol.2019.113369.
Zhao D., Wang X., Yang S., Guo Z. & Sheng G., 2012. Impact of water quality parameters on the sorption of U(VI) onto hematite. Journal of Environmental Radioactivity, 103(1), 20–29. https://doi.org/10.1016/j.jenvrad.2011.08.010.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)
