Groundwater vulnerability to pollution in degraded coal mining areas: modifying the DRASTIC method using the factor of exploitation impact on land surface
DOI:
https://doi.org/10.7494/geol.2023.49.4.313Keywords:
groundwater vulnerability to pollution, mining area, coal activities, mining exploitation phases, Upper Silesia Coal Basin, PolandAbstract
Mining activities such as underground exploitation of hard coal deposits and open cast mining are strong factors on groundwater depending on mine life cycle phases. The impact of coal mining activities on groundwater have been reported from many countries. In this case, a vulnerability assessment was conducted base on standard DRASTIC method and its modification DRASTIC MINE (DRASTICM) method. In order to take into account, the impact of mining activities, a new parameter was added which defined the impact of coal seams on the rock mass above, including the degree of its drainage and the range of its impact. In the standard DRASTIC method, the results indicate that groundwater vulnerability with high (38.6%) and very high occurrence classes (16.9% of the area), mostly covers the central part of the cast mine. In contrast, the reclaimed area of the excavation is a low-class area. The DRASTICM method increased the vulnerability index from 3 to 24 on 95% of the area, so a new vulnerability class of extremely high was delineated, which occurred in 1.6% of the area. This indicates areas that should be treated as a priority in order to avoid pollution, and in the final stage to plan activities in the field of the reclamation of mining areas. The results showed that groundwater vulnerability assessment in coal mining areas can be significantly improved.
Downloads
References
Al-Adamat R.A.N., Foster I.D.L. & Baban S.M.J., 2003. Groundwater vulnerability mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote Sensing and DRASTIC. Applied Geography, 23(4), 303–324. https://doi.org/10.1016/j.apgeog.2003.08.007.
Al Hallaq A.H. & Elaish B.S.A., 2012. Assessment of aquifer vulnerability to contamination in Khanyounis Governorate, Gaza Strip – Palestine, using the DRASTIC model within GIS environment. Arabian Journal of Geosciences, 5, 833–847. https://doi.org/10.1007/s12517-011-0284-9.
Aller L., Bennett T., Lehr J.H., Petty R.J. & Hackett G., 1987. DRASTIC: A Standardized System for Evaluating Ground Water Pollu-tion Potential Using Hydrogeologic Settings. United States Environmental Protection Agency, Washington.
Babiker I.S., Mohamed M.A.A., Hiyama T. & Kato K., 2005. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of the Total Environment, 345(1–3), 127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005.
Bell F.G., Bullock S.E.T., Hälbich T.F.J. & Lindsay P., 2001. Environmental impacts associated with an abandoned mine in the Wit-bank Coalfield, South Africa. International Journal of Coal Geology, 45(2–3), 195–216. https://doi.org/10.1016/S0166-5162(00)00033-1.
Bukowski P., Bukowska M., Rapantova N., Hemza P. & Niedbalska K., 2019. Secondary Water Saturation of a Carboniferous Rock Mass in a Abandoned Mines as the Cause Behind the Canges in Geomechanical Conditions and State of Hazards in Active Mines of the Upper Silesian Coal Basin. [in:] Khayrulina E., Wolkersdorfer Ch., Polyakova S. & Bogush A. (eds.), Mine Water: Techno-logical and Ecological Challenges: Proceedings of the IMWA 2019 Conference, 15–19 July, Perm, Russia, IMWA, 3–9.
Civita M., 1994. Le carte della vulnerabilità degli acquiferi all’inquinamento: Teoria e practica. Pitagora, Bologna.
El-Naqa A., Hammouri N. & Kuisi M., 2006. GIS-based evaluation of groundwater vulnerability in the Russeifa area, Jordan. Revista Mexicana de Ciencias Geológicas, 23(3), 277–287.
Fungaro D.A. & Izidoro J. de C., 2006. Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão. Química Nova, 29, 735–740. https://doi.org/10.1590/S0100-40422006000400019.
Gajowiec B. & Siemiński A., 1997. Objaśnienia do Mapy hydrogeologicznej Polski w skali 1: 50 000. Arkusz Jaworzno (0944). Pań-stwowy Instytut Geologiczny, Warszawa.
Galhardi J.A. & Bonotto D.M., 2016. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: A case study in southern Brazil. Environmental Science and Pollution Research, 23(18), 18911–18927. https://doi.org/10.1007/s11356-016-7077-3.
Geoportal [web portal of Head Office of Geodesy and Cartography], n.d. http://mapy.geoportal.gov.pl [access: 28.06.2021].
Ghosh A., Tiwari A.K. & Das S., 2015. A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Modeling Earth Systems and Environment, 1(3), 11. https://doi.org/10.1007/s40808-015-0009-2.
Góra S., 2011. Zasięg zruszenia górotworu jako element oceny podatności wód podziemnych na zanieczyszczenie wywołane zatapia-niem KWK „Grodziec”. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, 4/2011, 16–22.
Góra S., 2012. Podatność wód podziemnych na zanieczyszczenia w warunkach płytkiego górnictwa węglowego i zatapiania kopalń w północno-wschodniej części Górnośląskiego Zagłębia Węglowego. Akademia Górniczo-Hutnicza im. Stanisława Staszica, Wy-dział Geologii, Geofizyki i Ochrony Środowiska, Katedra Hydrogeologii i Geologii Inżynierskiej, Kraków [Ph.D. thesis].
Góra S. & Szczepański A., 2009. Możliwości zastosowania wybranych metod oceny podatności na zmiany w środowisku grunto-wo-wodnym w północno-wschodniej części Górnośląskiego Zagłębia Węglowego. Biuletyn Państwowego Instytutu Geologicznego, 436, 115–20.
Head Office of Geodesy and Cartography (GUGiK), n.d. www.gugik.gov.pl [access: 28.06.2021].
Institute of Soil Science and Plant Cultivation (IUNG), n.d. www.iung.pl [access: 28.06.2021].
Karan S.K., Samadder S.R. & Singh V., 2018. Groundwater vulnerability assessment in degraded coal mining areas using the AHP-Modified DRASTIC model. Land Degradation and Development, 29(8), 2351–2365. https://doi.org/10.1002/ldr.2990.
Krogulec E., 2006. Methods and results of groundwater vulnerability evaluation to contamination in the Kampinoski National Park, central Poland. Acta Geologica Polonica, 56(3), 349–359.
Krogulec E., 2013. Intrinsic and specific vulnerability of groundwater in a river valley-assessment, verification and analysis of uncer-tainty. Journal of Earth Science & Climatic Change, 4(6), 159. https://doi.org/10.4172/2157-7617.1000159.
Krogulec E. & Trzeciak J., 2017. Niepewność oceny podatności wód podziemnych na zanieczyszczenia dla obszarów miejskich na przykładzie warszawskiej dzielnicy Bielany [Uncertainty of the assessment of groundwater vulnerability for urban areas on the example of the Bielany Warsaw’s district]. Przegląd Geologiczny, 65(11/1), 1090–1095.
Krogulec E., Zabłocki S. & Zadrożna D., 2019. Variability of intrinsic groundwater vulnerability to pollution in River valley due to groundwater depth and recharge changes. Applied Sciences, 9(6), 1133. https://doi.org/10.3390/app9061133.
Kropka J., Witkowski A., Waligóra J., Rubin H. & Kaźmierczak J., 2013. Dokumentacja hydrogeologiczna określająca warunki hy-drogeologiczne w związku ze zmianą odwodnienia w celu wydobywania piasku w odkrywkowym wyrobisku CTL Maczki-Bór S.A., Sosnowiec-Bór, woj. śląskie. Uniwersytet Śląski, Sosnowiec [unpublished].
Kurek S., Paszkowski M. & Preidl M., 1991. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000. 944, Arkusz Jaworzno. Państwowy Instytut Geologiczny, Warszawa.
Li K., Gu Y., Li M., Zhao L., Ding J. & Lun Z., 2018. Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in Henan, Central China. International Biodeterioration & Biodegradation, 128, 148–154. https://doi.org/10.1016/j.ibiod.2017.03.026.
Machiwal D., Jha M.K., Singh V.P. & Mohan C., 2018. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews, 185, 901–927. https://doi.org/10.1016/j.earscirev.2018.08.009.
Margat J., 1968. Vulnérabilité des nappes d’eau souterraine à la pollution. Bases de la cartographie. Rapport BRGM, 68 SGL 198 HYD, Orléans.
Napolitano P. & Fabbri A.G., 1996. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. [in:] Kovar K. & Nachtnebel H.P. (eds.), Application of Geographic Information Systems in Hydrology and Water Re-sources Management: Proceedings of the Hydrogis’96 Conference Held in Vienna, Austria, from 16 to 19 April 1996, IAHS Pub-lication, 235, International Association of Hydrological Sciences, Wallingford, 559–566.
Niedbalska K., Haładus A., Bukowski P., Augustyniak I. & Kubica J., 2011. Modelling of changes of hydrodynamic conditions in the aquatic environment of the Maczki-Bór sand pit due to the fact of planned closure of mining operations (NE part of Upper Silesian Coal Basin – Poland). [in:] Rüde T.R., Freund A. & Wolkersdorfer Ch. (eds.), IMWA Congress 2011: Mine water – managing the challenges: Proceedings of the 11th Congress of the International Mine Water Association: Aachen, Germany, 4–11 September 2011, RWTH Aachen University, Institute of Hydrogeology, Aachen, 231–234.
Niedbalska K., Haładus A. & Bukowski P., 2014. Modelowanie zmian warunków przepływu wód podziemnych w otoczeniu podpo-ziomowego składowiska odpadów pogórniczych jako narzędzie weryfikacji koncepcji jego likwidacji i zabezpieczenia wód przed zanieczyszczeniem. [in:] Krawiec A. & Jamorska I. (red.), Modele matematyczne w hydrogeologii, Wydawnictwo Naukowe Uni-wersytetu Mikołaja Kopernika, Toruń, 139–142.
Palchik V., 2003. Formation of fractured zones in overburden due to longwall mining. Environmental Geology, 44(1), 28–38. https://doi.org/10.1007/s00254-002-0732-7.
Pazdro Z. & Kozerski B., 1990. Hydrogeologia ogólna. Wydawnictwa Geologiczne, Warszawa.
Qiao X., Li G., Li M., Zhou J., Du J. & Du C., 2011. Influence of coal mining on regional karst groundwater system: A case study in West Mountain area of Taiyuan City, northern China. Environmental Earth Sciences, 64(6), 1525–1535. https://doi.org/10.1007/s12665-010-0586-3.
Różkowski J., Witkowski A.J., Kropka J. & Rzepecki S., 2017. Skład chemiczny i jakość wód czwartorzędowego piętra wodonośnego w rejonie rekultywowanego wyrobiska piasku podsadzkowego Maczki-Bór w świetle wyników badań monitoringowych. Przegląd Geologiczny, 65(11/2), 1371–1376.
Ryncarz T., 1992. Ruchy górotworu wywołane wyrobiskami podziemnymi. Skrypty Uczelniane – Akademia Górniczo-Hutnicza im. Stanisława Staszica, 1295, Wydawnictwa AGH, Kraków.
Telesphore K. & Zhaohui L., 2008. A GIS based DRASTIC model for assessing groundwater in shallow aquifer in Yuncheng Basin, Shanxi, China. Research Journal of Applied Sciences, 3(3), 195–205.
Trzeciak J., 2018. Metodyka oceny podatności wód podziemnych na zanieczyszczenia na terenach zurbanizowanych na przykładzie dzielnicy Bielany (Warszawa). Archiwum Wydziału Geologii, Uniwersytet Warszawski, Warszawa [Ph.D. thesis].
Wagner J. & Chmura A., 1997. Objaśnienia do Mapy hydrogeologicznej Polski w skali 1:50 000. Arkusz Katowice (0943). Państwowy Instytut Geologiczny, Warszawa.
Wilanowski S., 2016. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000. Arkusz Katowice (943). Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
Wu J., Zhou H., He S. & Zhang Y., 2019. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environmental Earth Sciences, 78(15), 446. https://doi.org/10.1007/s12665-019-8471-1.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)