Long-term trends and factors influencing rainwater chemistry in the Tatra Mountains, Poland

Authors

DOI:

https://doi.org/10.7494/geol.2022.48.1.19

Keywords:

temporal trends, rainwater chemistry, atmospheric pollution, Tatra Mountains

Abstract

The results of rainwater chemistry monitoring in the Tatra Mountains, Poland, during the periods
1993–1994 and 2002–2019 were used to determine long-term trends and the factors influencing rainwater chemistry in the last two decades. In the early 1990’s, the study area was characterized by prominent acid rains with a pH of 4.4 that affected surface water, meadows, and forest ecosystems. A rising pH temporal trend has been observed during the following years, indicating improving air quality. This trend has also been observed in measured ionic concentrations and reduced wet deposition loads of sulfur- and nitrogen-containing acid-forming compounds. The neutralization capacity of rainwater in Kasprowy Wierch increased over the last twenty years and has mostly been dominated by NH4+. The ammonium availability index has been steadily increasing between years 2002 and 2019 but remains less than 1. This statistically significant relationship also indicates that a portion of neutralization occurs in the lower part of the atmosphere due to ammonium-related neutralization processes. The acidic potential (AP) and the ratio AP/NP (acidic potential/neutralization potential) have been declining during the same time. The stated trends in rainwater chemistry reflect the transformation to more environmentally sustainable economies in the region. Similar changes have been observed in neighboring countries in the region, including Slovakia, the Czech Republic, and Lithuania.

Downloads

Download data is not yet available.

References

Appelo C.A.J. & Postma D., 1996. Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam.

Balasubramanian R., Victor T. & Chun N., 2001. Chemical and statistical analysis of precipitation in Singapore. Water Air and Soil Pollution, 130, 451–456. https://doi.org/10.1023/A:1013801805621.

Behera S.N. & Sharma M., 2010. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Science of the Total Environment, 408, 3569–3575. https://doi.org/10.1016/j.scitotenv.2010.04.017.

Bleeker A., Sutton M.A., Acherman B., Alebic-Juretic A., Aneja V.P., Ellermann T., Erisman J.W. et al., 2009. Linking ammonia emission trends to measured concentrations and deposition of reduced nitrogen at different scales. [in:] Sutton M.A., Reis S. & Baker S. (eds.), Atmospheric Ammonia: Detecting emission changes and environmental impacts, Springer, New York, 123–180.

Chang C.T., Wang C.P. & Chuan J.H., 2017. Trends of two decadal precipitation chemistry in a subtropical rainforest in East Asia. Science of the Total Environment, 605–606, 88–98. https://doi.org/10.1016/j.scitotenv.2017.06.158.

Chang C.T., Yang C.J., Huang K.H., Huang J.C. & Lin T.C., 2022. Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades. Science of the Total Environment, 806, 150552. https://doi.org/10.1016/j.scitotenv.2021.150552.

Charlson R.J. & Rodhe H., 1982. Factors controlling the acidity of natural rainwater. Nature, 295, 5851, 683–685. https://doi.org/10.1038/295683a0.

Chate D.M. & Devara P.C.S., 2009. Acidity of raindrop by uptake of gases and aerosol pollutants. Atmospheric Environment, 43, 1571–1577. https://doi.org/10.1016/j.atmosenv.2008.06.031.

Chu S.H., 2004. PM2.5 episodes as observed in the speciation trends network. Atmospheric Environment, 38, 5237–5246. https://doi.org/10.1016/j.atmosenv.2004.01.055.

Colette A., Aas W., Banin L., Braban C.F., Ferm M., González Ortiz A., Ilyin I. et al., 2016. Air pollution trends in the EMEP region between 1990 and 2012. EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe. EMEP/CCC-Report 1/2016, Norwegian Institute for Air Research, Kjeller, Norway.

Conradie E.H., Van Zyl P.G., Pienaar J.J., Beukes J.P., Galy-Lacaux C., Venter D.D. & Mkhatshwa G.V., 2016. The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmospheric Environment, 146, 113–131. https://doi.org/10.1016/j.atmosenv.2016.07.033.

Dobrzyński D., 1997. Hydrochemia glinu w obszarach poddanych wpływom kwaśnych opadów w depresji śródsudeckiej. Archiwum Wydziału Geologii, Uniwersytet Warszawski, Warszawa.

Główny Inspektorat Ochrony Środowiska (GIOŚ), 2015. Chemizm opadów – stacje pomiarowe [Chemistry of precipitation – Measurement stations]. https://powietrze.gios.gov.pl/pjp/maps/chemistry/stations [access: 7.01.2021].

Główny Inspektorat Ochrony Środowiska (GIOŚ), 2019. Chemizm opadów – stężenia i ładunki [Chemistry of precipitation – Concentration and loads]. https://powietrze.gios.gov.pl/pjp/maps/chemistry/concentration [access: 7.01.2022].

Główny Urząd Statystyczny – Bank Danych Lokalnych (GUS-BDL), 2022. https://bdl.stat.gov.pl/BDL/start [access: 5.01.2022].

Goodwell A.E. & Kumar P., 2017. Temporal Information Partitioning Networks (TIPNets): A process network approach to infer ecohydrological shifts. Water Resources Research, 53(7), 5899–5919. https://doi.org/10.1002/2016WR020218.

Govender P. & Sivakumar V., 2020. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric Pollution Research, 11, 1, 40–56. https://doi.org/10.1016/j.apr.2019.09.009.

GroundWater Spatiotemporal Data Analysis Tool (GWSDAT), n.d. Data Manager. https://stats-glasgow.shinyapps.io/GWSDAT/ [access: 4.03.2022].

Harrison R.M. & Pio C.A., 1983. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. Atmospheric Environment, 17(9), 1733–1738. https://doi.org/10.1016/0004-6981(83)90180-4.

Haylock M.R., Hofstra N., Klein Tank A.M.G., Klok E.J., Jones P.D. & New M., 2008. A European daily high‐resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113, D20119. https://doi.org/10.1029/2008JD010201.

Herut B., Starinsky A., Katz A. & Rosenfeld D., 2000. Relationship between the acidity and chemical composition of rainwater and climatological conditions along a transition zone between large deserts and Mediterranean climate, Israel. Atmospheric Environment, 34, 1281–1292. https://doi.org/10.1016/S1352-2310(99)00291-5.

Hůnová I., 2020. Ambient Air Quality in the Czech Republic: Past and Present. Atmosphere, 11, 2, 214. https://doi.org/10.3390/atmos11020214.

Hůnová I., Šantroch J. & Ostatnická J., 2004. Ambient air quality and deposition trends at rural stations in the Czech Republic during 1993–2001. Atmospheric Environment, 38, 887–898. https://doi.org/10.1016/j.atmosenv.2003.10.032.

Jakimowicz-Hnatyszak K. & Pasławski P., 1996. Metody analizy wód naturalnych stosowane przez Centralne Laboratorium Chemiczne w badaniach monitoringowych. Przegląd Geologiczny, 44, 3, 242–248.

Jones W.R. & Spence M., 2013. GroundWater Spatio-Temporal Data Analysis Tool (GWSDAT Version 2.1): User Manual. Shell Global Solutions (UK). https://www.api.org/~/media/Files/EHS/Clean_Water/GW_other/gwsdat_v2_1/GWSDAT%20User%20Manual%20v21.pdf [access: 4.03.2022].

Keene W.C., Pszenny A.P., Galloway J.N. & Hawley M.E., 1986. Sea salt corrections and precipitations of constituent ratios in marine precipitation. Journal of Geophysical Research, 91(D6), 6647–6658. https://doi.org/10.1029/JD091iD06p06647.

Keresztesi Á., Birsan M.V., Nita I., Bodor Z. & Szép R., 2019. Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. Environmental Sciences Europe, 31, 50. https://doi.org/10.1186/s12302-019-0234-9.

Keresztesi Á., Nita I.A., Boga R., Birsan M.V., Bodor Z. & Szép R., 2020. Spatial and long-term analysis of rainwater chemistry over the conterminous United States, Environmental Research, 188, 109872. https://doi.org/10.1016/j.envres.2020.109872.

Kmiecik E., Szczepańska J., Szczygieł M. & Cebo K., 2007. Metodyka oceny czasowych trendów zmian jakości wód podziemnych. [in] Szczepański A., Kmiecik E. & Żurek A. (red.), Współczesne problemy hydrogeologii, t. 13, cz. 3, Wydział Geologii, Geofizyki i Ochrony Środowiska AGH, Kraków, 571–594.

Kostrzewski A. & Majewski M. (red.), 2021. Zintegrowany Monitoring Środowiska Przyrodniczego: organizacja, system pomiarowy, metody badań, wytyczne do realizacji. Biblioteka Monitoringu Środowiska, Bogucki Wydawnictwo Naukowe, Główny Inspektorat Ochrony Środowiska, Warszawa.

Krogulec E. & Zabłocki S., 2015. Relationship between the environmental and hydrogeological elements characterizing groundwater-dependent ecosystems in central Poland. Hydrogeology Journal, 23, 7, 1587–1602. https://doi.org/10.1007/s10040-015-1273-y.

Krogulec E., Zabłocki S. & Sawicka K., 2016. Changes in groundwater regime during vegetation period in Groundwater Dependent Ecosystems. Acta Geologica Polonica, 66, 3, 525–540.

Krupová D., Fadrhonsová V., Pavlendová H., Pavlenda P., Tóthová S. & Šrámek V., 2018. Atmospheric deposition of sulphur and nitrogen in forests of the Czech and Slovak Republic. Central European Forestry Journal, 64, 249–258. https://doi.org/10.1515/forj-2017-0050.

Lehmann C.M.B., Bowersox S.M. & Larson S.M., 2005. Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002. Environmental Pollution, 135, 347–361. https://doi.org/10.1016/j.envpol.2004.11.016.

Lightowlers P.J. & Cape J.N., 1988. Sources and fate of atmospheric HCl in the UK and Western Europe. Atmospheric Environment, 22, 7–15. https://doi.org/10.1016/0004-6981(88)90294-6.

Lipiec I. & Rusiniak P., 2020. Stability assessment of sulphur(II) compounds in medicinal water from B-8b Michał intake in Busko-Zdrój. Bulletin of Geography. Physical Geography Series, 18, 17–23. https://doi.org/10.2478/30491.

Małecka D.,1991. Opady atmosferyczne jako ważny czynnik kształtujący chemizm wód podziemnych. Przegląd Geologiczny, 1, 14–19.

Małecka D., Humnicki W. & Małecki J., 2002. Mapa hydrogeologiczna Polski, 1:50 000, Tatry Wysokie. PIG-PIB, Warszawa. https://baza.pgi.gov.pl/resources.html?type=map50&id=1061 [access: 15.04.2021].

Małecki J.J., 1998. Rola strefy areacji w kształtowaniu składu chemicznego płytkich wód podziemnych wybranych środowisk hydrogeochemicznych. Biuletyn Państwowego Instytutu Geologicznego, 381, 1–219.

Małecki J.J. & Matyjasik M., 2002. Vadose zone – challenges in hydrochemistry. Acta Geologica Polonica, 52, 4, 449–458.

Manning A.H., Verplanck P.L., Caine J.S. & Todd A.S., 2013. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed. Applied Geochemistry, 37, 64–78. https://doi.org/10.1016/j.apgeochem.2013.07.002.

Marx A., Hintze S., Sanda M., Jankovec J., Oulehle J., Dusek J., Vitvar T. et al., 2017. Acid rain footprint three decades after peak deposition: Long-term recovery from pollutant sulphate in the Uhlirska catchment (Czech Republic). Science of the Total Environment, 598, 1037–1049. https://doi.org/10.1016/j.scitotenv.2017.04.109.

Militino A.F., Moradi M. & Ugarte M.D., 2020. On the Performances of Trend and Change-Point Detection Methods for Remote Sensing Data. Remote Sensing, 12, 6, 1008. https://doi.org/10.3390/rs12061008.

Möller D., 1990. The Na/Cl ratio in rainwater and the sea salt chloride cycle. Tellus, 42B(3), 254–262. https://doi.org/10.3402/tellusb.v42i3.15216.

Oulehle F., Evans Ch.D., Hofmeister J., Krejci R., Tahovska K., Persson T., Cudlin P. & Hruška J., 2011. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Global Change Biology, 17, 3115–3129. https://doi.org/10.1111/j.1365-2486.2011.02468.x.

Pihl Karlsson G., Akselsson C., Hellsten S. & Karlsson P.E., 2011. Reduced European emissions of S and N – Effects on air concentrations, deposition and soil water chemistry in Swedish forests. Environmental Pollution, 159, 12, 3571–3582. https://doi.org/10.1016/j.envpol.2011.08.007.

PN-ISO 5667-8: 2003. Jakość wody – Pobieranie próbek – Część 8: Wytyczne dotyczące pobierania próbek opadu mokrego. Polski Komitet Normalizacyjny, Warszawa.

Porowska D., 2005. Wpływ zanieczyszczeń powietrza atmosferycznego na skład chemiczny wód opadowych w rejonie Warszawy. [in:] Hydrogeochémia '05: nové trendy v hydrogeochémii: 1. Modelovanie hydrogeochemických procesov: 2. Izotopy v hydrogeochémii: 3. Moderné metodické postupy: 4. Nová legislatíva: 5. Aktuálne problemy hydrogeochémie: zborník z medzinárodnej vedeckej konferencie: 21.–22. jún 2005 Bratislava, IX. ročník, Slovenska asociacia hydrogeologov, Bratislava, 129–134.

Raemdonck H., Maenhout W. & Andreae M.O., 1986. Chemistry of marine aerosol over the tropical and equatorial Pacific. Journal of Geophysical Research, 91, 8623–8636. https://doi.org/10.1029/JD091iD08p08623.

Rao P.S.P., Tiwari S., Matwale J.L., Pervez S., Tunved P., Safai P.D., Srivastava D.S., Bisht D.S., Singh S. & Hopke P.K., 2016. Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmospheric Environment, 146, 90–99. https://doi.org/10.1016/j.atmosenv.2016.06.069.

Rogora M., Colombo L., Marchetto A., Mosello R. & Steingruber S., 2016. Temporal and spatial patterns in the chemistry of wet deposition in Southern Alps. Atmospheric Environment, 146, 44–54. https://doi.org/10.1016/j.atmosenv.2016.06.025.

Rogora M., Smaschini L., Marchetto A., Mosello R., Tartari G.A. & Paro L., 2020. Decadal trends in water chemistry of Alpine lakes in calcareous catchments driven by climate change. Science of the Total Environment, 708, 135180. https://doi.org/10.1016/j.scitotenv.2019.135180.

Roy A., Chatterjee A., Tiwari S., Sarkar Ch., Das S.K., Ghosh S.K. & Raha S., 2016. Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India. Atmospheric Research, 181, 44–53. https://doi.org/10.1016/j.atmosres.2016.06.005.

Rzychoń D. & Worsztynowicz A., 2008. What affects the nitrogen retention in Tatra Mountains lakes’ catchments in Poland? Hydrology and Earth System Sciences, 12(2), 415–424. https://doi.org/10.5194/hess-12-415-2008.

Salthammer T., Schieweck A., Gu J., Ameri S. & Uhde E., 2018. Future trends in ambient air pollution and climate in Germany. Building and Environment, 143, 661–670. https://doi.org/10.1016/j.buildenv.2018.07.050.

Singh D.K. & Gupta T., 2017. Role of ammonium ion and transition metals in the formation of secondary organic aerosol and metallo-organic complex within fog processed ambient deliquescent submicron particles collected in central part of Indo-Gangetic Plain Chemosphere, 181, 725–737. https://doi.org/10.1016/j.chemosphere.2017.04.080.

Sopauskiene D. & Jasineviciene D., 2005. Changes in precipitation chemistry in Lithuania for 1981–2004. Journal of Environmental Monitoring, 8, 347–352. https://doi.org/10.1039/b516877e.

Strock K.E., Nelson S.J., Kahl J.S., Saros J.E. & McDowell W.H., 2014. Decadal trends reveal recent acceleration in the rate of recovery from acidification in the Northeastern US. Environmental Science and Technology, 48, 4681–4689. https://doi.org/10.1021/es404772n.

Stuchlík E., Kopáček J., Fott J. & Hořická Z., 2006. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia, 61, S11–S20. https://doi.org/10.2478/s11756-006-0116-7.

Szczepańska J. & Kmiecik E., 1998. Statystyczna kontrola jakości danych w monitoringu wód podziemnych. Wydawnictwa AGH, Kraków.

Szép R., Mateescu E., Niță A., Birsan M.V., Bodor Z. & Keresztesi Á., 2018. Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmospheric Research, 214, 311–328. https://doi.org/10.1016/j.atmosres.2018.08.009.

Śnieżek T. & Degórska A., 1996. Opady atmosferyczne w rejonie północno-wschodniej Polski. Badania prowadzone w Stacji Kompleksowego Monitoringu Środowiska „Puszcza Borecka”. [w:] Walna B., Kaczmarek L. & Siepak J. (red.), Chemizm i oddziaływanie kwaśnych deszczy na środowisko przyrodnicze: sesja naukowa, 10 czerwca 1996, Wyd. UAM, Poznań – Jeziory, 85–102.

Tiwari S., Hopke P.K., Thimmiah D., Dumka U.C., Srivastava A.K., Bisht D.S., Rao P.S.P. et al., 2016. Nature and sources of ionic species in precipitation across the Indo-Gangetic Plains, India, Aerosol and Air Quality Research, 16, 943–957. https://doi.org/10.4209/aaqr.2015.06.0423.

Turzański K.P. & Godzik B., 1996. Mokra depozycja zanieczyszczeń w rejonie krakowskim. [w:] Walna B., Kaczmarek L. & Siepak J. (red.), Chemizm i oddziaływanie kwaśnych deszczy na środowisko przyrodnicze: sesja naukowa, 10 czerwca 1996, Wyd. UAM, Poznań – Jeziory, 11–40.

Vuorenmaa J., Augustaitis A., Beudert B., Bochenek W., Clarke N., de Wit H.A, Dirnböck T. et al., 2018. Longterm changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Science of the Total Environment, 625, 1129–1145. https://doi.org/10.1016/j.scitotenv.2017.12.245.

Wagner G.H. & Steele K.F., 1989. Na+/Cl− ratios in rain across the USA, 1982–1986. Tellus, 41B(4), 444–451. https://doi.org/10.3402/tellusb.v41i4.15099.

Waldner P., Marchetto A., Thimonier A., Schmitt M., Rogora M., Granke O., Mues V. et al., 2014. Detection of temporal trends in atmospheric deposition of in organic nitrogen and sulphate to forests in Europe. Atmospheric Environment, 95, 363–374. https://doi.org/10.1016/j.atmosenv.2014.06.054.

Walna B., 2015. Results of long-term observations of basic physicochemical data of atmospheric precipitation in a protected area in Western Poland. Atmospheric Pollution Research, 6, 4, 651–661. https://doi.org/10.5094/APR.2015.074.

Walna B. & Siepak J., 1996. Chemizm kwaśnych deszczy na terenie Wielkopolskiego Parku Narodowego. [w:] Walna B., Kaczmarek L. & Siepak J. (red.), Chemizm i oddziaływanie kwaśnych deszczy na środowisko przyrodnicze: sesja naukowa, 10 czerwca 1996, Wyd. UAM, Poznań – Jeziory, 103–127.

Warby R.A.F., Johnson C.E. & Driscoll C.T., 2009. Continuing acidification of organic soils across the Northeastern USA: 1984–2001. Soil Science Society of America Journal, 73, 274–284. https://doi.org/10.2136/sssaj2007.0016.

Wayne P.R., 1985. Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets, and Their Satellites. Clarendon Press, Oxford.

Wątor K. & Kmiecik E., 2015. Analiza trendów zmian składu chemicznego wód leczniczych z ujęcia B-13 w Busku-Zdroju z wykorzystaniem programu GWSDAT. Przegląd Geologiczny, 63(10/2), 1125–1130.

Wątor K., Kmiecik E. & Rusiniak P., 2018. Wpływ metodyki badań na wyniki oznaczeń składu chemicznego wód leczniczych. Acta Balneologica, 60(4), 272–276.

Wu Q., Han G., Tao F. & Tang Y., 2012. Chemical composition of rainwater in a karstic agricultural area, Southwest China: the impact of urbanization. Atmospheric Research, 111, 71–78. https://doi.org/10.1016/j.atmosres.2012.03.002.

Wu Y., Xu Z. & Liu W., 2016. Chemical compositions of precipitation at three non-urban sites of Hebei Province, North China: influence of terrestrial sources on ionic composition. Atmospheric Research, 181, 115–123. https://doi.org/10.1016%2Fj.atmosres.2016.06.009.

Xu Z., Wu Y., Liu W.J., Liang C.S., Ji J., Zhao T. & Zhang X., 2015. Chemical composition of rainwater and the acid neutralizing effect at Beijing and Chizhou city, China. Atmospheric Research, 164–165, 278–285. https://doi.org/10.1016/j.atmosres.2015.05.009.

Yang Y.H., Ji C.J., Ma W.H., Wang S., Wang S., Han W., Mohammat A. et al., 2012. Significant soil acidification across northern China’s grasslands during 1980s–2000s. Global Change Biology, 18, 2292–2300. https://doi.org/10.1111/j.1365-2486.2012.02694.x.

Zeng J., Han G., Wu Q. & Tang Y., 2020. Effects of agricultural alkaline substances on reducing the rainwater acidification: insight from chemical compositions and calcium isotopes in a karst forests area. Agriculture, Ecosystems & Environment, 290, 106782. https://doi.org/10.1016/j.agee.2019.106782.

Zhang M., Wang S., Wu F., Yuan X. & Zhang Y., 2007. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmospheric Research, 84, 311–322. https://doi.org/10.1016/j.atmosres.2006.09.003.

Downloads

Published

2022-04-10

How to Cite

Małecki, J. J., Matyjasik, M., Krogulec, E., & Porowska, D. (2022). Long-term trends and factors influencing rainwater chemistry in the Tatra Mountains, Poland. Geology, Geophysics and Environment, 48(1), 19–38. https://doi.org/10.7494/geol.2022.48.1.19

Issue

Section

Articles