Theoretical aspects and numerical modelling of the GPR method to analyse its possibilities for the detection of leakages in urban water supply networks
DOI:
https://doi.org/10.7494/geol.2023.49.4.357Keywords:
GPR, leakage, water supply network, urbanised areasAbstract
Geophysical methods, especially selected electrical and electromagnetic ones, have been used for many years for the non-invasive detection of leakages from water supply networks. In this paper, the author focuses on theoretical aspects and numerical simulations to analyse the possibilities and limitations of the application of the selected electromagnetic method, i.e., the ground-penetrating radar (GPR) method for the aforementioned purpose. Various measurement techniques are used in the GPR method but in the paper the author refers to the most commonly used technique known as short-offset reflection profiling (SORP). As demonstrated in the paper, the detection of water leakages into a homogeneous and isotropic geological medium using the GPR method is a simple matter. However, the detection of leakages occurring in heterogeneous ground subjected to strong anthropopression and with the presence of electromagnetic interference becomes a difficult task, and interpretation may be difficult or even impossible. An important issue analysed in the paper was the phenomenon of the scattering of electromagnetic waves on underground anthropogenic objects, which very often occurs in urbanised areas. The results of the numerical modelling carried out for various scenarios of water leakages into typical ground allowed the possibilities and limitations of using the GPR method for the detection of leakages from water supply networks to be determined.
Downloads
References
Al-Qadi I.L., Xie W. & Roberts R., 2008. Scattering analysis of ground-penetrating radar data to quantify railroad ballast contamination. NDT & E International, 41(6), 441–447. https://doi.org/10.1016/j.ndteint.2008.03.004.
Amran T.S.T., Ismail M.P., Ahmad M.R., Amin M.S.M., Sani S. & Azreen N., 2017. Detection of underground water distribution piping system and leakages using Ground Penetrating Radar (GPR). AIP Conference Proceedings, 1799, 030004. https://doi.org/10.1063/1.4972914.
Amran T.S.T., Ismail M.P., Ahmad M.R. & Amin M.S.M., 2018. Monitoring underground water leakage pattern by ground penetrating radar (GPR) using 800 MHz antenna frequency. IOP Conference Series: Materials Science and Engineering, 298, 012002. https://doi.org/10.1088/1757-899X/298/1/012002.
Annan A.P., 2001. Ground Penetrating Radar – workshop notes. Sensor and Software Inc., Ontario, Canada.
Arcone S.A., 1995. Numerical studies of the radiation patterns of resistively loaded dipoles. Journal of Applied Geophysics, 33, 39–52. https://doi.org/10.1016/0926-9851(95)90028-4.
Aslam H., Kaur M., Sasi S., Mortula M., Yehia S. & Ali T., 2017. A conceptual approach to detection of water pipe leakage using non-destructive techniques. [in:] Proceedings of the 5th International Conference on Water, Energy and Environment, Sharjah, United Arab Emirates, 28.02–2.03.2017, 1–12.
Aslam H., Mortula M.M., Yehia S., Ali T. & Kaur M., 2022. Evaluation of the factors impacting the water pipe leak detection ability of GPR, infrared cameras, and spectrometers under controlled conditions. Applied Sciences, 12(3), 1683. https://doi.org/10.3390/app12031683.
Ayala-Cabrera D., Herrera M., Izquierdo J., Ocaña-Levario S.J. & Pérez-García R., 2013. GPR-based water leak models in water distribution systems. Sensors, 13(12), 15912–15936. https://doi.org/10.3390/s131215912.
Ayala-Cabrera D., Campbell E., Carreño-Alvarado E.P., Izquierdo J. & Pérez-García R., 2014.Water leakage evolution based on GPR interpretations. Procedia Engineering, 89, 304–310. https://doi.org/10.1016/j.proeng 2014.11.192.
Bimpas M., Amditis A. & Uzunoglu N., 2010. Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45 GHz. Journal of Applied Geophysics, 70(3), 226–236. https://doi.org/10.1016/j.jappgeo 2010.01.003.
Carrive P., Saintenoy A., Leger E., Arcone S.A. & Sailhac P., 2022. Exploiting ground-penetrating radar signal enhancements by water-saturated bulb surrounding defective waterpipes for leak detection. Geosciences, 12(10), 368. https://doi.org/10.3390/geosciences12100368.
Cataldo A., Persico R., Leucci G., Benedetto E., Cannazza G., Matera L. & Giorgi L., 2014. Time domain reflectometry, ground penetrating radar and electrical resistivity tomography: A comparative analysis of alternative approaches for leak detection in underground pipes. NDT & E International, 62, 14–28. https://doi.org/10.1016/j.ndte int.2013.10.007.
Cheung B.W.Y. & Lai W.W.L., 2019. Field validation of water-pipe leakage detection through spatial and time-lapse analysis of GPR wave velocity. Near Surface Geophysics, 17(3), 231–246. https://doi.org/10.1002/nsg.12041
Crocco L., Prisco G., Soldovieri F. & Cassidy N.J., 2009. Early-stage leaking pipes GPR monitoring via microwave tomographic inversion. Journal of Applied Geophysics, 67(4), 270–277. https://doi.org/10.1016/j.jappgeo 2008.09.006.
Crocco L., Soldovieri F., Millington T. & Cassidy N.J., 2010. Bistatic tomographic GPR imaging for incipient pipeline leakage evaluation. Progress in Electromagnetics Research, 101, 307–321. https://doi.org/10.2528/PIER09122206.
De Coster A., Pérez Medina J.L., Nottebaere M., Alkhalifeh K., Neyt X., Vanderdonckt J. & Lambot S., 2019. Towards an improvement of GPR-based detection of pipes and leaks in water distribution networks. Journal of Applied Geophysics, 162, 138–151. https://doi.org/10.1016/j.jappgeo.2019.02.001.
Demirci S., Yigit E., Eskidemir I.H. & Ozdemir C., 2012. Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method. NDT & E International, 47, 35–42. https://doi.org/10.1016/j.ndteint 2011.12.008.
El-Zahab S. & Zayed T., 2019. Leak detection in water distribution networks: An introductory overview. Smart Water, 4, 5. https://doi.org/10.1186/s40713-019-0017-x
Erasmus V.M., 2009. Methods of pipe and leak detection in underground water and sewer reticulations. University of Pretoria [B.Sc. dissertation].
Fomberg B., 2003. Some numerical techniques for Maxwell’s equations in different types of geometries. [in:] Ainsworth M., Davies P., Duncan D., Rynne B. & Martin P. (eds.), Topics in Computational Wave Propagation: Direct and Inverse Problems, Lecture Notes in Computational Science and Engineering, 31, Springer, Berlin, Heidelberg, 265–299. https://doi.org/10.1007/978-3-642-55483-4_7.
Gołębiowski T., 2004. Wprowadzenie do metodyki interpretacji badań georadarowych przy użyciu procedury modelowania numerycznego [Introduction to interpretation of GPR date using of numerical modelling]. Przegląd Geologiczny, 52(7), 563–568.
Gołębiowski T., 2006. Numeryczne modelowanie pola georadarowego przy pomocy metody FDTD [Numerical modeling of GPR wave field using of FDTD technique]. Geoinformatica Polonica, 8, 23–36.
Gołębiowski T., 2012. Zastosowanie metody georadarowej do detekcji i monitoringu obiektów o stochastycznym rozkładzie w ośrodku geologicznym [Application of the GPR method for detection and monitoring of objects with stochastical distribution in the geological medium]. Rozprawy, Monografie – Akademia Górniczo-Hutnicza im. Stanisława Staszica, 251, Wydawnictwa AGH, Kraków.
Gołębiowski T., 2015. Introduction to numerical modeling of electromagnetic wave field on the example of georadar data recorded in river dike. Technical Transactions – Environmental Engineering, 112(2-Ś), 39–53. https://doi.org/10.4467/2353737XCT.15.225.4611.
Grimm R.E., Heggy E., Clifford S., Dinwiddie C., McGinnis R. & Farrell D., 2006. Absorption and scattering in ground-penetrating radar: Analysis of the bishop tuff. Journal of Geophysical Research, 111(E6). https://doi.org/10.1029/2005JE002619.
Hadjimitsis D.G., Agapiou A. & Themistocleous K., 2014. Integrated Use of Space, Geophysical and Hyperspectral Technologies Intended for Monitoring Water Leakages in Water Supply Networks. IntechOpen, London, UK.
Halimshah N.N., Yusup A., Amin Z.M. & Ghazalli M.D., 2015. Visual inspection of water leakage from ground penetrating radar radargram. SPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-2/W2, 191–198. https://doi.org/10.5194/isprsannals-II-2-W2-191-2015.
Hawari A.A., Khader M., Zayed T. & Moselhi O., 2016. Detection of leaks in water mains using ground penetrating radar. International Journal of Geological and Environmental Engineering, 10(4), 422–425.
Hunaidi O. & Giamou P., 1998. Ground-penetrating radar for detection of leaks in buried plastic water distribution pipes. [in:] Seventh International Conference on Ground Penetrating Radar: May 27–30, 1998, University of Kansas, Lawrence, Kansas, USA: Proceedings, Radar Systems and Remote Sensing Laboratory, University of Kansas, 783–786.
Lai W.W.L, Chang R.K.W., Sham J.F.C. & Pang K., 2016. Perturbation mapping of water leak in buried water pipes via laboratory validation experiments with high frequency ground penetrating radar (GPR). Tunnelling and Underground Space Technology, 52, 157–167. https://doi.org/10.1016/j.tust.2015.10.017.
Muller K., 2005. Modelling of GPR Wave Propagation and Scattering in Inhomogeneous Media. Department of Geosciences, University of Oslo [M.Sc. thesis].
Nakhkash M. & Mahmood-Zadeh M.R., 2004. Water leak detection using ground penetrating radar. [in:] Proceedings of the Tenth International Conference on Ground Penetrating Radar: GPR 2004, Delf, The Netherlands, 21–24 June 2004, Delft University of Technology, Delft, 525–528. https://doi.org/10.1109/ICGPR.2004.179793.
Pilcher R., Hamilton S., Chapman H., Ristovski B. & Stapely S., 2007. Leak Location and Repair: Guidance Notes. International Water Association (IWA), London.
Plewa M. & Plewa S., 1992. Petrofizyka. Wydawnictwa Geologiczne, Warszawa.
PN-EN ISO 14688-1:2006. Badania geotechniczne – Oznaczanie i klasyfikowanie gruntów – Część 1: Oznaczanie i opis. Polski Komitet Normalizacyjny, Warszawa.
Ponti C., Santarsiero M. & Schettini G., 2020. Time-domain electromagnetic scattering by buried dielectric objects with the cylindrical-wave approach for GPR modelling. Electronics, 9(3), 421. https://doi.org/10.3390/electronics9030421.
Porubiaková A. & Komačka J., 2015. A comparison of dielectric constants of various asphalts calculated from time intervals and amplitudes. Procedia Engineering, 111, 660–665. https://doi.org/10.1016/j.proeng.2015.07.129.
Puust R., Kapelan Z., Savic D.A. & Koppel T., 2010. A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45. https://doi.org/10.1080/15730621003610878.
Radzevicius S.J. & Daniels J.J., 2000. Ground penetrating radar polarization and scattering from cylinders. Journal of Applied Geophysics, 45(2), 111–125. https://doi.org/10.1016/S0926-9851(00)00023-9.
Saarenketo T., 2003. Measuring Electromagnetic Properties of Asphalt for Pavement Quality Control and Defect Mapping. Roadscanners, Rovaniemi, Finland.
Stampolidis A., Soupios P., Vallianatos F. & Tsokas G.N., 2003. Detection of leaks in buried plastic water distribution pipes in urban places – A case study. [in:] Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar: May 14–16, 2003, AULA, Delft, the Netherlands, International Research Centre for Telecommunications-transmission and Radar, Delft, 120–124. https://doi.org/10.1109/AGPR.2003.1207303.
Ustawa z dnia 7 lipca 1994 r. – Prawo budowlane [The Act of 7 July 1994 – Construction Law]. Dz.U. 1994 nr 89 poz. 414.
Wutke M., Lejzerowicz A., Jackiewicz-Rek W., Garbacz A., 2019. Influence of variability of water content in different states on electromagnetic waves parameters affecting accuracy of GPR measurements of asphalt and concrete pavements. MATEC Web of Conferences, 262, 06012. https://doi.org/10.1051/matecconf/201926206012.
Yang Y., Du Z., Li Y., Zhang T., Liu L., Iqbal I. & Peng S., 2022. Anomaly detection of pipeline leakage based on electric field component imaging using ground penetrating radar. Advances in Civil Engineering, 1799750. https://doi.org/10.1155/2022/1799750.
Yee K.S., 1966. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302–307. https://doi.org/10.1109/TAP.1966 1138693.
Ying L., Li-Xin G. & Li-Ying F., 2019. GPR echo analysis of compound scattering of underground rough surface and multiple objects. [in:] 2019 IEEE International Conference on Computational Electromagnetics: ICCEM 2019: Proceedings: March 20–22, 2019, Shanghai, China, IEEE, Piscataway, 1–3. https://doi.org/10.1109/COMPEM.2019.8778908.
Downloads
Published
How to Cite
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)