An evaluation of organic matter dispersed in the Menilite Formation in Silesian Nappe (Polish Outer Carpathians): an optical microscopic approach
DOI:
https://doi.org/10.7494/geol.2022.48.3.243Keywords:
Outer Carpathians, Menilite Formation, organic matter, huminite/vitrinite reflectance, solid bitumenAbstract
In this study, optical microscopic analyses were applied to evaluate the thermal maturity, characteristics of solid bitumen, and other organic matter finely dispersed in Oligocene shales of the Menilite Formation in the Iwonicz-Zdrój–Rudawka Rymanowska Fold (IRF) and Bóbrka–Rogi Fold (BRF) of the Central Carpathian Synclinorium of the Silesian Nappe, Outer Carpathians, Poland. The investigation was carried out at two-unit depths of the shallow and deeper D-1 sections (430 m – IRF and 4,300 m – BRF) and outcrop samples (BRF). The mean random huminite reflectance values indicate immature conditions with respect to hydrocarbon generation in samples from the D-1 shallow section (VRo≈0.40%) and in the outcrop samples (VRo=0.36%). The degree of thermal maturity of the organic matter from a depth of about 4,300 m – BRF based on random vitrinite (VRo≈0.80%) and solid bitumen (BRo≈0.65%) reflectance measurements is associated with the “oil window” for petroleum generation. The organic components dispersed in the examined Menilite Formation samples are typical for hydrocarbon-prone organic matter, suggesting the dominant kerogen type II. The potential precursor maceral for solid bitumen occurring in the examined samples from the deeper D-1 sections is largely the alginite maceral.
Downloads
References
American Society for Testing and Materials (ASTM), 2011. ASTM D7708-11: Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks. ASTM International, West Conshohocken, Pennsylvania. https://doi.org/10.1520/D7708-11.
American Society for Testing and Materials (ASTM), 2015. ASTM D2797/D2797M-11a: Standard Practice for Preparing Coal Samples for Microscopical Analysis by Reflected Light. ASTM International, West Conshohocken, Pennsylvania. https://doi.org/10.1520/D2797_D2797M-11A.
Baudin F., Disnar J.-R., Aboussou A. & Savignac F., 2015. Guidelines for Rock-Eval analysis of recent marine sediments. Organic Geochemistry, 86, 71–80. https://doi.org/10.1016/j.orggeochem.2015.06.009.
Botor D., Toboła T. & Waliczek M., 2020. Thermal history of the Carboniferous shales in northern part of the Intra-Sudetic Basin (SW Poland): A combined organic petrography and Raman spectroscopy study. Acta Geologica Polonica, 70, 363–396. https://doi.org/10.24425/agp.2019.126463.
Cardott B.J., Landis Ch.R. & Curtis M.E., 2015. Post-oil solid bitumen network in the Woodford Shale, USA – A potential primary migration pathway. International Journal of Coal Geology, 139, 106–113. https://doi.org/10.1016/j.coal.2014.08.012.
Cornford C., 1979. Organic Petrography of Lower Cretaceous Shales at DSDP Leg 47B Site 398, Vigo Seamount, Eastern North Atlantic. Initial Reports of the Deep Sea Drilling Project: A Project Planned by and Carried out with the Advice of the Joint Oceanographic Institutions for Deep Earth Sampling, 47(2), 523–527. https://doi.org/10.2973/dsdp.proc.47-2.119.1979.
Curiale J.A., 1986. Origin of solid bitumens, with emphasis on biological marker results. Organic Geochemistry, 10, 559–580. https://doi.org/10.1016/0146-6380(86)90054-9.
Curtis J.B., Kotarba M.J., Lewan M.D. & Więcław D., 2004. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: insights from hydrous pyrolysis experiments. Organic Geochemistry, 35, 1573–1596. https://doi.org/10.1016/j.orggeochem.2004.06.018.
Hackley P.C. & Cardott B.J., 2016. Application of organic petrography in North American shale petroleum systems: a review. International Journal of Coal Geology, 163, 8–51. https://doi.org/10.1016/j.coal.2016.06.010.
Hackley P.C., Araujo C.V., Borrego A.G., Bouzinos A., Cardott B.J., Carvajal-Ortiz H., Cely M.R.L. et al., 2019. Testing reproducibility of vitrinite and solid bitumen reflectance measurements in North American unconventional source-rock reservoir petroleum systems. Marine and Petroleum Geology, 114, 104172. https://doi.org/10.1016/j.marpetgeo.2019.104172.
Hackley P.C., Walters C.C., Kelmen S.R., Mastalerz M. & Lowers H.A., 2017. Organic petrology and micro-spectroscopy of Tasmanites microfossils: Applications to kerogen transformations in the early oil window. Organic Geochemistry, 14, 23–44. https://doi.org/10.1016/j.orggeochem.2017.09.002.
Hajto M., Kudrewicz R., Czerwińska B. & Wachowicz-Pyzik A., 2013. Obecny stan rozpoznania obszaru badań. [in:] Górecki W. (red.), Atlas geotermalny Karpat Wschodnich. Formacje fliszowe oraz utwory mioceńskie i mezozoicznopaleozoiczne podłoża Karpat Wschodnich, AGH, Kraków, 103–127 [with English summary].
Hunt J.M. (ed.), 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York.
International Committee for Coal and Organic Petrology (ICCP), 1998. The new vitrinite classification (ICCP System 1994). Fuel, 77(5), 349–358. https://doi.org/10.1016/S0016-2361(98)80024-0.
International Committee for Coal and Organic Petrology (ICCP), 2001. The new inertinite classification (ICCP System 1994). Fuel, 80(4), 459–471. https://doi.org/10.1016/S0016-2361(00)00102-2.
Jacob H., 1989. Classification. structure. genesis and practical importance of nature solid bitumen (“migrabitumen”). International Journal of Coal Geology, 11(1), 65–79. https://doi.org/10.1016/0166-5162(89)90113-4.
Jucha S., 1969. Łupki jasielskie, ich znaczenie dla stratygrafii i sedymentologii serii menilitowo-krośnieńskiej: Karpaty fliszowe. Prace Geologiczne – Polska Akademia Nauk. Oddział w Krakowie. Komisja Nauk Geologicznych, 52, Wydawnictwa Geologiczne, Warszawa.
Jucha S. & Kotlarczyk J., 1958. Próba nowego podziału stratygraficznego serii menilitowo-krośnieńskiej. Nafta, 8, 205–207.
Koltun Y.V., 1992. Organic matter in Oligocene Menilite Formation rocks of the Ukrainian Carpathians: palaeoenvironment and geochemical evolution. Organic Geochemistry, 18(4), 423–430. https://doi.org/10.1016/0146-6380(92)90105-7.
Kosakowski P., Więcław D. & Kotarba M., 2009. Charakterystyka macierzystości wybranych utworów fliszowych w przygranicznej strefie polskich Karpat Zewnętrznych [Source rock characteristic of the selected flysch deposits in the transfrontier area of the Polish Outer Carpathians]. Geologia – Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 35(4/1), 155–190.
Kosakowski P., Koltun Y., Machowski G., Poprawa P. & Papiernik B., 2018. The geochemical characteristics of the Oligocene – lower Miocene Menilite formation in the Polish and Ukrainian outer Carpathians: a review. Journal of Petroleum Geology, 41(4), 319–336. https://doi.org/10.1111/jpg.12705.
Kotarba M.J. & Koltun Y.V., 2006. Origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province. [in:] Golonka J. & Picha F.J. (eds.), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, AAPG Memoir, 84, The American Association of Petroleum Geologists, Tulsa, 395–443. https://doi.org/10.1306/985605M843074.
Kotarba M.J., Curtis J.B. & Lewan M.D., 2009. Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis from Menilite Shales of the Polish Outer Carpathians. Organic Geochemistry, 40(7), 769–783. https://doi.org/10.1016/j.orggeochem.2009.04.007.
Kotarba M.J., Więcław D., Dziadzio P., Kowalski A., Kosakowski P. & Bilkiewicz E., 2014. Organic geochemical study of source rocks and natural gas and their genetic correlation in the eastern part of the Polish Outer Carpathians and Palaeozoic-Mesozoic basement. Marine and Petroleum Geology, 56, 97–122. https://doi.org/10.1016/j.marpetgeo.2014.03.014.
Köster J., Kotarba M., Lafargue E. & Kosakowski P., 1998. Source rock habitat and hydrocarbon potential of Oligocene Menilite Formation (Flysch Carpathians, Southeast Poland): an organic geochemical and isotope approach. Organic Geochemistry, 29, 649–669. https://doi.org/10.1016/S0146-6380(98)00059-X.
Kuśmierek J., Machowski G. & Baran U., 2016a. Sejsmiczne odwzorowanie stylu tektonicznego centralnego synklinorium Karpat w rejonie Krosno – Besko [Seismic imaging of the tectonic style of the Central Carpathian Synclinorium in the Krosno – Besko area]. [in:] Geopetrol 2016: współpraca nauki i przemysłu w rozwoju poszukiwań i eksploatacji złóż węglowodorów: X międzynarodowa konferencja naukowo-techniczna: Zakopane, 19–22.09.2016, Prace Naukowe Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego, 209, INiG-PIB, Kraków, 513–518.
Kuśmierek J., Baran U. & Machowski G., 2016b. Interpretacja wgłębnej tektoniki fałdów i nasunięć w przekrojach geologiczno-sejsmicznych rejonu Krosno – Besko. Programme Blue Gas II, project ShaleCarp [project documentation, unpublished].
Landis C.R. & Castaño J.R., 1995. Maturation and bulk chemical properties of a suite of solid hydrocarbons. Organic Geochemistry, 22(1), 137–149. https://doi.org/10.1016/0146-6380(95)90013-6.
Łuszczak K., Wyglądała M., Śmigielski M., Waliczek M., Matyja B.A., Konon A. & Ludwiniak M., 2020. How to Deal with Missing Overburden – Investigating Late Cretaceous Exhumation of the Mid-Polish Anticlinorium by a Multi-Proxy Approach. Marine and Petroleum Geology, 114, 104229. https://doi.org/10.1016/j.marpetgeo.2020.104229.
Machowski G., Krzysztofik M., Waliczek M. & Stefaniuk M., 2017. Source potential of the Menilite Formation in the central Carpathian Synclinorium (Outer Carpathians, Poland). SGEM 2017. [in:] SGEM 2017: 17th International Multidisciplinary Scientific Geoconference: Science and Technologies in Geology, Exploration and Mining: 29 June–5 July, 2017, Albena, Bulgaria: Conference Proceedings. Vol. 17, iss. 14, Applied and Environmental Geophysics Oil and Gas Exploration, STEF92 Technology Ltd., Sofia, 889–896. https://doi.org/10.5593/sgem2017/14/S06.111.
Matyasik I. & Dziadzio P., 2006. Reconstruction of petroleum systems based on integrated geochemical and geological investigations: Selected examples from the Middle Outer Carpathians in Poland. [in:] Golonka J. & Picha F.J. (eds.), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, AAPG Memoir, 84, The American Association of Petroleum Geologists, Tulsa, 497–518. https://doi.org/10.1306/985618M843076.
Matyasik I., Such P. & Leśniak G., 2006. Ocena potencjału generacyjnego skał macierzystych oraz trendów zmian własności zbiornikowych w rejonie Rymanów-Targowisko-Iwonicz. [in:] Geopetrol 2006: międzynarodowa konferencja naukowo-techniczna nt. Problemy techniczne i technologiczne pozyskiwania węglowodorów a zrównoważony rozwój gospodarki: Zakopane 18–21.09.06, Prace Instytutu Nafty i Gazu, 137, INiG, Kraków, 1023–1029.
Matyasik I., Leśniak G. & Such P., 2015. Elementy systemu naftowego Karpat. Prace Naukowe Instytutu Nafty i Gazu, 203, INiG-PIB, Kraków.
Pawlewicz M., 2006. Total Petroleum System of the North Carpathian Province of Poland, Ukraine, Czech Republik, and Austria. Bulletin 2204-D, U.S. Geological Survey, Reston, Virginia. https://doi.org/10.3133/b2204D.
Phan D. P., Tokarski A. K., Świerczewska A., Strzelecki P. J., Waliczek M., Krąpiec M. & Cuong N. Q., 2019. Neotectonic (Miocene to recent) vertical movements in the Lao Cai Basin (Red River Fault Zone, Vietnam): an approach to seismic hazard assessment. Journal of Asian Earth Sciences, 181, 103885. https://doi.org/10.1016/j.jseaes.2019.103885.
Pickel W., Kus J., Flores D., Kalaitzidis S., Christanis K., Cardott B.J., Misz-Kennan M. et al., 2017. Classification of liptinite – ICCP System 1994. International Journal of Coal Geology, 69, 40–61. https://doi.org/10.1016/j.coal.2016.11.004.
Sanei H., 2020. Genesis of solid bitumen. Scientific Reports, 10, 15595. https://doi.org/10.1038/s41598-020-72692-2.
Sechman H., Guzy P., Kaszuba P., Wojas A., Machowski G., Twaróg A. & Maślanka A., 2020. Direct and indirect surface geochemical methods in petroleum exploration – a case study from eastern part of the Polish Outer Carpathians. International Journal of Earth Sciences, 109, 1853–1867. https://doi.org/10.1007/s00531-020-01876-y.
Suárez-Ruiz I., Flores D., Filho J.G.M. & Hackley P.C., 2012. Review and update of the applications of organic petrology: part 1, geological applications. International Journal of Coal Geology, 99, 54–112. https://doi.org/10.1016/j.coal.2012.02.004.
Sýkorová I., Pickel W., Christanis K., Wolf M., Taylor G.H. & Flores D., 2005. Classification of huminite – ICCP System 1994. International Journal of Coal Geology, 62, 85–106. https://doi.org/10.1016/j.coal.2004.06.006.
Taylor G.H., Teichmüller M., Davis A., Diessel C.F.K., Littke R. & Robert P., 1998. Organic Petrology. Gerbrüder Bornträger, Berlin.
Tissot B.P. & Welte D.H., 1984. Petroleum Formation and Occurrence. 2nd ed. Springer, Berlin, Heidelberg.
Tyson R.V., 1995. Sedimentary Organic Matter Organic Facies and Palynofacies. Chapman & Hall, London.
Waliczek M., Machowski G., Więcław D., Konon A. & Wandycz P., 2019. Properties of solid bitumen and other organic matter from Oligocene shales of the Fore-Magura Unit in Polish Outer Carpathians: Microscopic and geochemical approach. International Journal of Coal Geology, 210, 103206. https://doi.org/10.1016/j.coal.2019.05.013.
Waliczek M., Machowski G., Poprawa P., Świerczewska A. & Więcław D., 2021. A novel VRo, Tmax, and S indices conversion formulae on data from the fold-and-thrust belt of the Western Outer Carpathians (Poland). International Journal of Coal Geology, 234, 103672. https://doi.org/10.1016/j.coal.2020.103672.
Wdowiarz S., 1985. Niektóre zagadnienia budowy geologicznej oraz ropo- i gazonośności centralnego synklinorium Karpat w Polsce. Biuletyn Instytutu Geologicznego, 350, 5–45.
Więcław D., Bilkiewicz E., Kotarba M., Lillis P., Dziadzio P., Kowalski A., Kmiecik N. et al., 2020. Origin and secondary processes in petroleum in the eastern part of the Polish Outer Carpathians. International Journal of Earth Sciences, 109, 63–99. https://doi.org/10.1007/s00531-019-01790-y.
Zakrzewski A., Kosakowski P., Waliczek M. & Kowalski A., 2020. Polycyclic aromatic hydrocarbons in Middle Jurassic sediments of the Polish Basin provide evidence for high-temperature palaeo-wildfires. Organic Geochemistry, 145, 104037, https://doi.org/10.1016/j.orggeochem.2020.104037.
Zakrzewski A., Waliczek M. & Kosakowski P., 2022. Geochemical and petrological characteristics of the Middle Jurassic organic-rich siliciclastic sediments from the central part of the Polish Basin. International Journal of Coal Geology, 255, 103986. https://doi.org/10.1016/j.coal.2022.103986.
Ziemianin K., 2017. Petrographic-geochemical characterization of the dispersed organic matter in Menilite shales from the Silesian Unit in the Carpathian Mountains of SE Poland. Nafta-Gaz, 73(11), 835–842. https://doi.org/10.18668/NG.2017.11.02.
Downloads
Published
How to Cite
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)