Interpretation of complex geological structures with the use of forward and inverse modeling of magnetotelluric field

Authors

  • Marek WOJDYŁA Przedsiębiorstwo Badań Geofizycznych sp. z o.o., Warszawa
  • Michał STEFANIUK AGH Akademia Górniczo-Hutnicza, Kraków

DOI:

https://doi.org/10.7494/geol.2011.37.1.113

Keywords:

magnetotellurics, forward modeling, 1D/2D inversion, hydrocarbon deposits, Carpathians

Abstract

General assumptions of 1D and 2D modeling and inversion were presented in this paper. Methodology of magnetotelluric data interpretation was described including analysis of dimensionality of geoelectrical medium and its influence on choosing the proper interpretation model. Relations between initial model and final results of inversion were shown based on magnetotelluric (AMT and CSAMT) data from Grabownica oil and gas field. The second example was from the Lodyna oil field. A possibility of interpretation of thin vertical layers, which can approximate the Lodyna field by 1D and 2D MT inverse procedures was analyzed. Dependences between final geological models and MT curve type (TE mode or TE mode) taken to interpretation were shown. Finally, methodology of interpretation was proposed.

Downloads

Download data is not yet available.

References

Berdichevsky M.N. & Dmitriev W.I., 2008. Models and Methods of Magnetotellurics. Springer, 2008.

Cagniard L., 1953. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18, 605–637.

Constable S.C., Parker R.L. & Constable C.G., 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300.

Garcia X., Ledo J. & Queralt P., 1999. 2D inversion of 3D magnetotelluric data: The Kayabe dataset. Earth Planets Space, 51, 1135–1143.

Jankowski L. & Probulski J., 2011. Próba reinterpretacji historii rozwoju tektoniczno-basenowego na przykładzie złóż węglowodorów Grabownica, Strachocina i Łodyna (mat. niepubl.).

Jones F.W. & Pascoe L.J., 1971. A general computer program to determine the perturbation of alternating electric currents in a two-dimensional model of a region of uniform conductivity with an embedded inhomogeneity. Geophysical Journal of the Royal Astronomical Society, 24, 3–30.

Jones A.G. & Schultz A.S., 1997. Introduction to MT-DIW2. Journal of Geomagnetism and Geoelectricity (special issue), 49, 727–737.

Jupp D.L.B. & Vozoff K., 1975. Stable iterative methods for the inversion of geophysical data. Geophysical Journal of the Astronomical Society, 42, 957–976.

Karnkowski P., 1993. Złoża ropy naftowej i gazu ziemnego. t. 2: Karpaty i zapadlisko przedkarpackie. Geos, 1–253.

Kaufman A.A. & Keller G.V., 1981. The magnetotelluric sounding method. W: Methods in Geochemistry and Geophysics, 15, Elsevier, Amsterdam, 1–283.

Ledo J., Queralt P., Marti A. & Jones A.G., 2002. Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of imitations and resolution. Geophysical Journal International, 150, 1–13.

Levenberg K., 1944. A method for the solution of certain non-linear problems in leastsquares. The Quarterly of Applied Math, 2, 164–168.

Łuczejko J. & Nycz R., 1988. Dodatek nr 2 do dokumentacji geologicznej złoża ropy naftowej Grabownica. Archiwum PGNiG, Warszawa, 1–34.

Mackie R.L & Madden T.R., 1993. Three-dimensional magnetotelluric inversion using conjugate gradients. Geophysical Journal International, 115, 215–229.

Marquardt D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

Rodi W. & Mackie R.L., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics, 66, 174–187.

Sheriff R.E., 1991. Encyclopedic Dictionary of Exploration Geophysics (3rd ed.). Society of Exploration Geophysicists, Tulsa.

Smith J.T., & Booker J.R., 1988. Magnetotelluric inversion for minimum structure. Geophysics, 53, 1565–1576.

Smith J.T., Hoversten G.M., Gasperikova E.& Morrison H.F., 1999. Sharp Boundary Inversion of 2-D Magnetotelluric Data. Geophysical Prospecting, 47, 469–486.

Stefaniuk M., Figuła J., Sada M., Sito Ł. & Wojdyła M., 2011. Optymalizacja metodyki prac pomiarowych z wykorzystaniem kompleksu metod elektromagnetycznych (mat. niepubl.).

Swift C.M., 1967. A magnetotelluric investigation of an electrical conductivity anomaly in the south-western United States. Massachusetts Institute of Technology, Cambridge, MA, USA (rozprawa doktorska).

Szewczyk E., 2009. Złoże ropy naftowej „Łodyna” – tradycja i nowoczesność. Górnictwo Odkrywkowe, 50, 2–5, 154–157.

Tikhonov A.N., 1950. Determination of electrical properties of deep strata of earth’s crust. Akad. Nauk. S.S.S.R. Doklady, 87, 4, 547–550.

Trapeznikov Ju.A., Andreeva E.V., Batalev W.Ju., Berdievskij M.N., Wanan L.L., Volyhin A.M., Golubcova N.S. & Rybin A.K., 1997. Magitotellurieskije zondirovania v gorah Kirgizskogo Tan-Sana. Fizika Ziemli, 1, 3–20.

Wannamaker P.E., Stodt J.A. & Rijo L., 1987. A stable finite element solution for twodimensional magnetotelluric modelling. Geophysical Journal of the Royal Astronomical Society, 88, 277–296.

Wu F.T., 1968. The inverse problem of magnetotelluric sounding. Geophysics, 33, 972–979.

Downloads

Published

2011-01-01

How to Cite

WOJDYŁA, M., & STEFANIUK, M. (2011). Interpretation of complex geological structures with the use of forward and inverse modeling of magnetotelluric field. Geology, Geophysics and Environment, 37(1), 113. https://doi.org/10.7494/geol.2011.37.1.113

Issue

Section

Articles