The mineralogy, geochemistry and health risk assessment of deposited particulate matter (PM) in Kraków, Poland

Authors

  • Agnieszka Gruszecka-Kosowska AGH University of Science and Technology Faculty of Geology, Geophysics, and Environmental Protection Department of Environmental Protection Mickiewicza Av. 30 30-059 Kraków, Poland E-mail: agnieszka.gruszecka@agh.edu.pl Phone: +48 12 617 50 33 Fax: +48 12 633 29 36
  • Magdalena Wdowin Mineral and Energy Economy Research Institute, Polish Academy of Sciences ul. J. Wybickiego 7 31-261 Kraków, Poland

DOI:

https://doi.org/10.7494/geol.2016.42.4.429

Keywords:

particulate matter, air quality, human health, mineralogical composition, chemical composition

Abstract

One of the most important air contaminants in Krakow is particulate matter (PM), especially during winter months. Deposited PM was sampled between November 2014 and January 2015 and November 2015 and January 2016. The PM deposition amounted to 0.0646 g/m2 per day in the centre of Krakow and 0.0328 g/m2 in the northern district of the city. The allowed value of annual dust deposits (0.547 g/m2 per day) was not exceeded. The XRD and SEM-EDS analysis showed that quartz, calcite, potassium feldspar, plagioclase, kaolinite, and gypsum were the main mineralogical components of the deposited PM. Only in a few samples were illite, dolomite, and apatite observed. Significant concentrations were measured (ICP-MS) for Ca, Fe, Mg, Al, K, Si, Na, and Mn, and high concentrations for Ti, Cu, Zn, As, Pb, Cr, Ti, V, Li, Sr and Ni. The highest estimated daily intakes (EDI) for resuspended PM, were stated for ingestion exposure pathway than for dermal contact, and finally for inhalation, both for children and adults, as well as, for carcinogenic and non-carcinogenic elements. The mean hazard quotient (HQ) values for all three exposure pathways decreased in the following order: Fe > Al > Zn > Mn > Sr > Cu > Ba > Cr > Pb > V > Ni > Li > As > Sn > Zr > Co > Cd > Be, for children and adults. The hazard index values for all elements in each exposure pathway (HIelem) and for single elements in all exposure pathways (HIpath) were <1, both for children and adults. The risk values from all three exposure pathways were unacceptable in the case of Cr, both for children and adults, and in the case of As for children. The total non-carcinogenic risk (HItotal) values in all three exposure pathways for all elements were <1, however in case of children the risk value pointed to a low risk level. The total carcinogenic risk (Rtotal) values in all three exposure pathways for As and Cr exceeded the acceptable level, both for children and adults.

Downloads

Download data is not yet available.

References

Aleksandropoulou V. & Lazaridis M., 2013. Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions. Air Quality, Atmosphere & Health, 6, 1, 13–26.

ATSDR, 2005. Public health assessment guidance manual. Agency for Toxic Substances and Disease Registry

Baldacci S., Maio S., Cerrai S., Sarno G., Baizb N., Simoni M., Annesi-Maesano I. & Viegi G., 2015. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respiratory Medicine, 109, 1089–1104.

Beig G., Chate D.M., Ghude S.D., Mahajan A.S., Srinivas R., Ali K., Sahu S.K., Parkhi N., Surendran D. & Trimbake H.R., 2013. Quantifying the effect of air quality control measures during the 2010 Commonwealth Games at Delhi, India. Atmospheric Environment, 80, 455–463.

Brook R.D., Franklin B., Cascio W., Hong Y., Howard G., Lipsett M., Luepker R., Mittleman M., Samet J. & Smith S.C., Tager I., 2004. Air pollution and cardiovascular disease. Circulation, 109, 2655–2671.

Brunekreef B. & Holgate S.T., 2002. Air pollution and health. Lancet, 360, 1233–1242.

EEA, 2014. Air Quality in Europe. Report No 5/2014.

Fereira-Baptista L. & De Miguel E., 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, 4501–4512.

Fuzzi S., Baltensperger U., Carslaw K. et al., 2015. Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 15, 8217–8299.

Gotschi T., Heinrich J., Sunyer K. & Kunzli N., 2008. Longterm effects of ambient air pollution on lung function. A review. Epidemiology, 19, 690–701.

Grantz D.A., Garner J.H.B. & Johnson D.W., 2003. Ecological effects of particulate matter. Environment International, 29, 213–239.

Gruszecka-Kosowska A., 2016. Assessment of the Krakow inhabitants’ health risk caused by the exposure to inhalation of outdoor air contaminants. Stochastic Environmental Research and Risk Assessment, doi:10.1007/ s00477-016-1366-8.

Guarnieri M. & Balmes J.R., 2014. Outdoor air pollution and asthma. Lancet, 383, 1581–1592.

Hansen L.D., Silberman D. & Fisher G.L., 1981. Crystalline components of stack collected, size-fractionated coal fly ash. Environmental Science & Technology, 15, 1057–1062.

Hulett L.D., Weinberger A.J., Northcutt K.J. & Ferguson M., 1980. Chemical species in fly ash from coal-burning power plant. Science, 210, 1356–1358.

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Cambridge University Press.

Jiming H.A.O., Kebin H.E., Duan L., Junhua L. & Litao W., 2007. Air pollution and its control in China. Frontiers of Environmental Science & Engineering China, 1, 2, 129– 142.

Kan H., Chen R. & Tong S., 2012. Ambient air pollution, climate change and population health in China. Environment International, 42, 10–19.

Kiebała A., Kozieł M. & Zgłobicki W., 2015. Cr, Cu, Ni, Pb i Zn w pyle drogowym na terenie Lublina. Inżynieria i Ochrona Środowiska, 18, 3, 299–310.

Krajewska E. & Niesiobędzka K., 2009. Wpływ zasolenia spływów powierzchniowych na wymywanie metali z pyłów ulicznych do fazy wodnej. Ochrona Środowiska i Zasobów Naturalnych, 40, 137–143.

Kurt-Karakus P.B., 2012. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.

Lee H., Honda Y., Hashizume M., Guo Y.L., Wu C.F., Kan H., Jung K., Lim Y.H., Yi S. & Kim H., 2015. Short-term exposure to fine and coarse particles and mortality: a multicity time-series study in East Asia. Environmental Pollution, 207, 43–51.

Lemly A.D., 1996. Evaluation of the hazard quotient method for risk assessment of selenium. Ecotoxicology and Environmental Safety, 35, 156–162.

Li P., Xin J., Wang Y., Li G., Pan X., Wang S., Cheng M., Wen T., Wang G. & Liu Z., 2015. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City. Environmental Science & Pollution Research, 22, 358–368.

Lippmann M., Chen L.C., Gordon T., Kazuhiko I., Thurston G.D., 2013. National Particle Component Toxicity (NPACT) initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components. Research Report Health Effects Institute, 177, 5–13.

Liu E., Yan T., Birch G., Zhu Y., 2014. Pollution and health risk of potentially toxic elements in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476–477, 522–531.

Megido L., Suarez-Pena B., Negral L., Castrillon L., Suarez S., Fernandez-Nava Y. & Maranon E., 2016. Relationship between physico-chemical characteristics and potential toxicity of PM10. Chemosphere, 162, 73–79.

Mohmand J., Eqani S.A.M.A.S., Fasola M., Alamdar A., Mustafa I., Ali N, Liu L., Peng S. & Shen H., 2015. Human exposure to toxic metals via contaminated dust: Bio-accumulation trends and their potential risk estimation. Chemosphere, 132, 142–151.

Munir S., Gabr S., Habeebullah T.M. & Janajrah M.A., 2016. Spatiotemporal analysis of fine particulate matter (PM2.5) in Saudi Arabia using remote sensing data. Egyptian Journal of Remote Sensing and Space Science.

Nag S., Gupta A.K. & Mukhopadhyay U.K., 2005. Size distribution of atmospheric aerosols in Kolkata, India and the assessment of pulmonary deposition of particle mass. Indoor Built Environment, 14, 381–389.

Pant P., Guttikunda S.K. & Peltier R.E., 2016. Exposure to particulate matter in India: A synthesis of findings and future directions. Environmental Research, 147, 480-496.

Patra A.K., Gautam S. & Kumar P., 2016. Emissions and human health impact of particulate matter from surface mining operation – a review. Environmental Technology & Innovation, 5, 233–249.

Peters A., Dockery D.W., Muller J.E. & Mittleman M.A., 2001. Increased particulate air pollution and the triggering of myocardial infarction. Circulation, 103, 2810– 2815.

Polichetti G., Cocco S., Spinali A. Trimarco V. & Nunziata A., 2009. Effects of particulate matter (PM 10, PM2.5, PM1.0) on the cardiovascular system. Toxicology, 261, 1–8.

Pope III C.A., Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K. & Thurston G.D., 2002. Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. Journal of American Medical Association, 287, 1132–1141.

Raes F., van Dingenen R., Vignati E., Wilson J., Putaud J.- P., 2000. Formation and cycling of aerosols in the global troposphere. Atmospheric Environment, 34, 4215–4240.

Rashki A., Eriksson P.G., de Rautenbach W.C.J., Kaskaoutis D.G., Grote W. & Dykstra J., 2013. Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere, 90, 227–236.

Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Dz.U. 2016, poz. 1395.

Samara C., Kantiranis N., Kollias P., Planou S., Kouras A., Besis A., Manoli E. & Voutsa D., 2016. Spatial and seasonal variations of the chemical, mineralogical and morphological features of quasi-ultrafine particles (PM0.49) at urban sites. Science of the Total Environment, 553, 392–403.

Samet J.M., Dominici F., Curriero F.C., Coursac I. & Zeger S.L., 2000. Fine particulate air pollution and mortality in 20 US cities 1987–1994. Journal of Medicine, 343, 1742– 1749.

Sanderson P., Delgado-Saborit J.M. & Harrison R.M., 2014. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmospheric Environment, 94, 353–365.

Sarigiannis D.A., Karakisios S.P., Zikopulos D., Nikolaki S. & Kermenidou M., 2015. Lung cancer risk from PAHs emitted from biomass combustion. Environmental Research, 137, 147–156.

Shao M., Tang X., Zhang Y. & Li W., 2006. City clusters in China: air and surface water pollution. Frontiers in Ecology and the Environment, 4, 7, 353–361.

Tomaszewska B. & Olszowski T., 2012. Ilościowa i jakościowa ocena depozycji pyłu na obszarze wsi. Proceedings of ECOpole, 6, 2, 609–616.

Trojanowska M. & Świetlik R., 2016. Ocena narażenia mieszkańcow miast na metale ciężkie obecne w pyłach ulicznych. Bezpieczeństwo i Ekologia, Autobusy, 12/2016, 474–478.

US EPA, 1989. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual. EPA/540/1- 89/002. Office of Solid Waste and Emergency Response.

US EPA, 1996a. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. Revision 2.

US EPA, 1996b. Soil Screening Guidance: Technical Background Document. EPA/540/R-95/128. Office of Solid Waste and Emergency Response.

US EPA, 1998. Method 6020A (SW-846): Inductively Coupled Plasma-Mass Spectrometry. Revision 1.

US EPA, 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. Office of Solid Waste and Emergency Response.

US EPA, 2016. Regional Screening Level (RSL). Summary Table (TRD1E-6, HQD1). May 2016.

Wang M., Beelen R., Stafoggia M. et al., 2014. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects. Environment International, 66, 97–106.

WHO, 2013. Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe. World Health Organization, Caucasus and Central Asia.

WHO, 2016. WHO ambient air pollution database. May 2016.

Wilczyńska-Michalik W. & Michalik M., 2015. Skład i pochodzenie cząstek pyłów w powietrzu atmosferycznym w Krakowie. Aura, 3, 12–16.

Wilczyńska-Michalik W., Rzeźnikiewicz K., Pietras B. & Michalik M., 2014. Fine and ultrafine TiO2 particles in aerosol in Krakow (Poland). Mineralogia, 45, 3–4, 65–77.

Wilczyńska-Michalik W., Pietras B., Samek L., Furman L., Łatkiewicz A., Rzeźnikiewicz K. & Michalik M., 2015. Submikronowe pyły w powietrzu atmosferycznym w Krakowie. Aura, 8, 4–7.

Williams J., de Reus M., Krejci R., Fischer H. & Strom J., 2002. Application of the variability-size relationship to atmospheric aerosol studies: estimating aerosol lifetimes and ages. Atmospheric Chemistry and Physics, 2, 133–145.

WIOŚ, 2017. Wojewódzki Inspektorat Ochrony Środowiska w Krakowie, http://monitoring.krakow.pios.gov.pl/.

Zhou M., He G., Liu Y., Fischer H. & Strom J., 2015. The associations between ambient air pollution and adult respiratory mortality in 32 major Chinese cities, 2006– 2010. Environmental Research, 137, 278–286.

Downloads

Published

2017-05-14

Issue

Section

Articles

How to Cite

Gruszecka-Kosowska, A., & Wdowin, M. (2017). The mineralogy, geochemistry and health risk assessment of deposited particulate matter (PM) in Kraków, Poland. Geology, Geophysics and Environment, 42(4), 429. https://doi.org/10.7494/geol.2016.42.4.429