Factors controlling 226Ra, 228Ra and their activity ratio in groundwater – an application in Polish Carpathian mineral waters


  • Chau Dinh Nguyen AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland.
  • Mariusz Kopeć AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland.
  • Jakub Nowak AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland.




radium isotopes, groundwater, recoil effect, desorption/adsorption, Monte Carlo simulation, the Polish Carpathians


The influences of aquifer formations and water chemical composition on the occurrence and activity ratio of radium isotopes in groundwater are discussed. Based on the model of desorption/adsorption processes of natural radionuclides in the rock-water system, the concentrations of radium isotopes and their activity ratio in groundwater are evaluated by the numerical Monte Carlo method (MC). In cases where the groundwater is of a similar age, limited flow (up to several meters/year), the physical conditions and the uranium and thorium activity ratios in host water formations are similar, the activity concentrations of radium isotopes (226Ra, 228Ra) and their activity ratio (226Ra/228Ra) are the highest in the water of high desorption coefficient for chloride sodium water (domination of Cl− , Na+ ions), medium in water of moderate desorption (bicarbonate water – HCO3 − , Ca2+) and the lowest in waters with a low desorption coefficient (sulfate ions prevailing – SO4 2−, Ca2−). The statements are well confirmed in the case of the natural mineral waters from the Polish Outer Carpathians. The total dissolved solids (TDS) of the Polish Carpathians waters varies from several hundred milligrams per liter to several tens of thousands milligrams per liter. The minimum, maximum and average concentrations of 226Ra, 228Ra and their activity ratio (226Ra/228Ra) are 82, 1340, 456 mBq/L, 19, 1240, 354 mBq/L and 0.89, 7.6 and 2.0 for chloride waters; 4, 140, 45.8 mBq/L, 12, 171, 62.7 mBq/L and 0.3, 1.7 and 0.70 for bicarbonate waters and 0.8, 9.3, 3.6 mBq/L, 5.3, 54, 20.1 mBq/L and 0.1, 1.0, 0.3 for sulfate ones, respectively. The desorption coefficients are the highest for the Cl-Na, moderate for the HCO3-Ca and the lowest for the SO4-Ca waters (in contrast to the adsorption properties of these waters).


Download data is not yet available.


Asikainen M. & Kahlos H., 1979. Anomalously high concentrations of uranium, radium and radon in water from drilled well in the Helsinki region. Geochimica et Cosmochimica Acta, 44, 1681–1686.

Asikainen M., 1981. Radium content and the Ra-226/Ra-228 activity ratio in groundwater from bedrock. Geochimica et Cosmochimica Acta , 45, 1375–1381.

Bassot S., Mallet C. & Stammose D., 2001. Experimental study and modeling of the radium sorption onto goethite. MRS Proceedings, 66, 1081–1089.

Chałupnik S., 2005. Theoretical study of radium behavior in aquifer. [in:] Naturally Occurring Radioactive Materials (NORM IV). Proceedings of an international conference held in Szczyrk, Poland, 17–21 May 2004, IAEA-TEC- DOC-1472, IAEA, Vienna, 67–78, [on-line:] http://www- pub.iaea.org/MTCD/publications/PDF/te_1472_web.pdf [access: 12.05.2016].

Chowaniec J., 1998. Groundwater in Polish flysch Carpathians. Folia Geographica, 29–30, 113–132.

Currell M., Dioni I., Cendón D.I. & Xiang Cheng, 2013. Analysis of environmental isotopes in groundwater to understand the response of a vulnerable coastal aquifer to pumping: Western Port Basin, south-eastern Australia. Hydrogeology Journal, 21, 7, 1413–1427.

Davidson M.R. & Dickson B.L., 1986. A porous flow model for steady-state transport of radium in ground water. Water Resources Research, 22, 34–44.

Dickson B.L., 1985. Radium isotopes in saline seepages, south-western Yilgarn, Western Australia. Geochimica Cosmochimica Acta, 49, 361–368.

Dickson B.L., 1990. Radium in groundwater. [in:] The Environmental Behavior of Radium. In two volumes, 1, Technical Reports Series, 310, International Atomic Energy Agency, Vienna, 335–372.

d’Obyrn K. & Postawa A., 2013. Selected hydrochemical ratios of waters from inflows at level VI in “Wieliczka” Salt Mine. Geology, Geophysics & Environment, 39, 3, 163– 174.

Drever J., 1997. The geochemistry of natural waters. Prentice Hall, New Jersey.

Dukat D. & Kuehl S., 1995. Non-steady-state 210 Pb flux and the use of Ra-228/Ra-226 as a geochronometer on the Amazon continental shelf. Marine Geology, 125, 329–350.

Elsinger R.J. & Moore W.S., 1983. 224Ra, 228Ra, and 226Ra in Winyah Bay and Delaware Bay. Earth and Planetary Science Letters, 64, 3, 430–436.

Fleischer R.L., 1980. Isotopic disequilibrium of uranium: alpha-recoil damage and preferential solution effects. Science, 207, 979–981.

Grundl T. & Cape M., 2006. Geochemical factors controlling radium activity in sandstone aquifer. Ground Water, 44, 4, 518–527.

Jones M.J., Butchins L.J., Charnock J.M., Pattrick R.A.D., Small J.S., Vaughan D.J., Wincott P.L. & Livens F.R., 2011. Reactions of radium and barium with the surfaces of carbonate minerals. Applied Geochemistry, 26, 1231–1238.

Kalos M.H. & Whitlock P.A., 2008. Monte Carlo Methods. 2 nd revised and enlarged edition. Wiley-VCH.

Kasprzyk A., Motyka J. & Wardas-Lasoń M., 2013. Changes in the chemical composition of groundwater in quaternary aquifer in Old Kraków, Poland (years 2002–2012). Geology, Geophysics & Environment, 39, 2, 143–152.

Kigoshi K., 1971. A recoil thorium 234: dissolution into water and the uranium-234, uranium-238 disequilibrium in nature. Science, 173, 47–48.

King P., Michel J. & Moore W., 1982. Ground water geochemistry of 226 Ra, 228 Ra and 222 Rn. Geochimica et Cosmochimica Acta, 46, 1173–1182.

Kraemer T.K. & Reid D.F., 1984. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region. Chemical Geology, 46, 2, 153–174.

Krishnaswami S., Graustein W.C., Turekian K.K. & Dowd I.F., 1982. Radium, thorium and radioactive lead isotopes in groundwaters: Application to the in situ determination of adsorption – desorption rate constants and retardation factors. Water Resources Research, 18, 6, 1633–1675.

Labidi S., Mahjoubi H., Essafi F. & Salah R.B., 2010. Natural radioactivity levels in mineral, therapeutic and spring waters in Tunisia. Radiation Physics and Chemistry, 79, 1196–1202.

Langmuir D. & Melchior D., 1985. The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from Palo Duro Basin, Texas. Geochimica et Cosmochimica Acta, 49, 2423–2432.

Lauria D.C., Almeida R.M. & Sracek O., 2004. Behavior of radium, thorium and radium in groundwater near the Buena Lagoon in the Coastal Zone of the State of Rio de Janeiro, Brazil. Environmental Geology, 47, 1, 11–19.

Martin P. & Akber R.A., 1999. Radium isotopes as indicators of adsorption-desorption interactions and barite formation in groundwater. Journal of Environmental Radioactivity, 46, 271–286.

Moore W.S. & Edmond J.M., 1984. Radium and barium in the Amazon River system. Journal of Geophysical Research, 89, 2061–2065.

Murray R.W., Miller D.J. & Kryc K.A., 2000. Analysis of major and trace elements in rocks, sediments, and interstitial waters by inductively coupled plasma-atomic emission spectrometry. ODP Technical Note, 29, 1–27.

Nguyen Dinh Chau, Niewodniczański J., Dorda J., Ochoński A., Chruściel E. & Tomza I., 1997. Determination of radium isotopes in mine waters through alpha- and beta-activities measured by liquid scintillation spectrometry. Journal of Radioanalytical & Nuclear Chemistry, 222, 1–2, 69–74.

Nguyen Dinh Chau & Chruściel E., 2007. Leaching of technologically enhanced naturally occurring radioactive materials. Applied Radiation and Isotopes, 65, 968–974.

Nowak J., Nguyen D.C. & Rajchel L., 2012. Natural radioactive nuclides in the thermal waters of the Polish Inner Carpathians. Geologica Carpathica, 63, 343–351.

Olivera O.P. Jr & Sarkis J.E.S., 2002. Isotope measurement in uranium using a quadrupole inductively coupled plasma mass spectrometer (ICPMS). Journal of Radioanalytical and Nuclear Chemistry, 253, 1, 345–350.

Paczyński B. & Płochniewski Z., 1996. Wody mineralne i lecznicze Polski. PIG, Warszawa.

Plewa M. & Plewa S., 1992. Petrofizyka. Wyd. Geologiczne, Warszawa.

Pluta I. & Tomza I., 1988. Uran i rad 226 Ra w wodach z utworów karbońskich południowo-zachodniego obszaru GZW. [in:] Zastosowanie metod geofizycznych w górnictwie kopalin stałych: materiały II krajowej konferencji naukowo-technicznej, Zeszyty Naukowe Akademii Górniczo-Hutniczej im. Stanisława Staszica. Geofizyka Stosowana, 1, Wyd. AGH, Kraków, 139–147.

Porowski A., 2006. Origin of mineralized waters in the Central Carpathian Synclinorium SE Poland. Studia Geologica Polonica, 125, 1, 1–67.

Reynold B.C., Wasserburg G.J. & Baskaran M., 2003. The transport of U- and Th-series nuclides in sandy confined aquifers. Geochemica et Cosmochemica Acta, 67, 1955–1972.

Rihs S. & Condomines M., 2002. An improved method for Ra isotopes ( 226 Ra, 228 Ra, 224 Ra) measurements by gamma spectrometry in natural waters: application to CO 2-rich thermal waters from the French Massif Central. Chemical Geology, 182, 409–421.

Roba C.A., Nita D., Kosma C., Codrea V. & Olah S., 2012. Correlations between radium and radon occurrence and hydrogeochemical features for various geothermal aquifers in Northwestern Romania. Geothermics, 42, 32–46.

Rowan E.L., Engle M.A., Kirby C.S. & Kraemer T.F., 2011. Radium content of oil- and gas-field produced waters in the Northern Appalachian Basin (USA): Summary and discussion of data. USGS Scientific Investigations Report 2011–5135, U.S. Geological Survey, Reston, Virginia.

Ruberu S.R., Liu Y.G. & Perera S.K., 2005. Occurrence of 224 Ra, 226 Ra, 228 Ra, gross alpha, and uranium in California groundwater. Health Physics Society, 89, 6, 667–678.

Szabo Z., dePaul V.T., Fischer J.M., Kraemer T.F. & Jacobsen E., 2012. Occurrence and geochemistry of radium in water from principal drinking-water aquifer system of the United States. Applied Geochemistry, 37, 729–752.

Salonen L. & Huikuri P., 2000. Elevated levels of uranium series radionuclides in private water supplies in Finland. [in:] Peter J., Schneider G., Bayer A. (eds), High Levels of Natural Radiation and Radon Areas: Radiation Dose and Health Effects. Proceedings of the 5 th International Conference on High Levels of Natural Radiation and Radon Areas held in Munich, Germany on September 4 to 7, 2000. Volume II: Poster Pesentations, Federal Office for Radiation Protection, 87–91

Sarin M.M., Krishnaswami S., Somayajulu B.L.K. & Moore W.S., 1990. Chemistry of uranium, thorium, and radium isotopes in the Ganga-Bramaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta 34, 1387–1396.

Scott M.R., 1982. The chemistry of U and Th series nuclides in rivers. [in:] Ivanovich M. & Harmon R.S. (eds.), Uranium series disequilibrium: applications to environmental problems, Oxford Science Publications, Clarendon Press, 181–201.

Sturchio N.C., Bohlke J.K. & Markun F.J., 1992. Radium isotope geochemistry of thermal water, Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta, 57, 1203–1214.

Tomza I., 1991. Anomalia radiohydrogeologiczna Górnośląskiego Zagłębia Węglowego i jej wpływ na promieniotwórcze skażenie środowiska. [in:] Stefaniuk M. (red.), Zastosowanie metod geofizycznych w górnictwie kopalin stałych: materiały III Krajowej Konferencji Naukowo-Technicznej, Jaworze 28–30 listopada 1991. T. 1–2, Wyd. AGH, Kraków, 159–168.

Vengosh A., Hirschfeld D., Vinson D., Dwyer G., Raanan H., Rimawi O., Al-Zoubi A., Akkawi E., Marie A., Haquin G., Zaarur S. & Ganor J., 2009. High natural occurring radio-activity in fossil groundwater from the Middle East. Environmental Science & Technology, 43, 1789–1775.

Vesterbacka P., Mäkeläinen I. & Arvela H., 2005. Natural radioactivity in drinking water in private wells in Finland. Radiation Protection Dosimetry, 113, 2, 223–232.

Vesterbacka P., Turtiainen T., Heinävaara S. & Arvela H., 2006. Activity concentrations of 226 Ra and 228 Ra in drilled well water in Finland. Radiation Protection Dosimetry, 121, 4, 406–421.

Webster I., Hancock G. & Murray A., 1995. Modeling the effect of salinity on radium desorption from sediment. Geochimica et Cosmochimica Acta, 59, 12, 2469–2476.

Whitehead N.E., Barry B.J., Ditchburn R.G., Morris C.J. & Stewart M.K., 2007. Systematics of radon at the Wairakei geothermal region, New Zealand. Journal of Environmental Radioactivity, 92, 16–29.




How to Cite

Nguyen, C. D., Kopeć, M., & Nowak, J. (2017). Factors controlling 226Ra, 228Ra and their activity ratio in groundwater – an application in Polish Carpathian mineral waters. Geology, Geophysics and Environment, 42(3), 337. https://doi.org/10.7494/geol.2016.42.3.337