Tuning of agent-based computing

Authors

  • Aleksander Byrski AGH University of Science and Technology

DOI:

https://doi.org/10.7494/csci.2013.14.3.491

Keywords:

agent-based computing, agent-based meta-heuristics, biologically-inspired computing

Abstract

In this paper an Evolutionary Multi-agent system based computing processis subjected to detailed analysis of the parameters in order to ground a basefor better understanding this meta-heuristics from the practitioner's point of view.After reviewing the concepts of EMAS and its immunological variant, a series of experiments is shown and theresults of influencing of search outcomes by certain parameters are discussed.

Downloads

Download data is not yet available.

References

Byrski A., Dreżewski R., Siwik L., Kisiel-Dorohinicki M.:. Evolutinoary multiagent systems. The Knowledge Engineering Review, 2013 (accepted for printing).

Byrski A., Kisiel-Dorohinicki M.:. Agent-based evolutionary and immunological optimization. In Computational Science - ICCS 2007, 7th International Conference, Beijing, China, May 27 - 30, 2007, Proceedings. Springer, 2007.

Byrski A., Kisiel-Dorohinicki M., Nawarecki E.:. Agent-based evolution of neural network architecture. In Hamza M., editor, Proc. of the IASTED Int. Symp.: Applied Informatics. IASTED/ACTA Press, 2002.

Cantu-Paz E.:. A summary of research on parallel genetic algorithms. IlliGAL Report No. 95007. University of Illinois, 1995.

Cetnarowicz K., Kisiel-Dorohinicki M., Nawarecki E.:. The application of evolution process in multi-agent world (MAW) to the prediction system. In Tokoro M., editor, Proc. of the 2nd Int. Conf. on Multi-Agent Systems (ICMAS’96). AAAI

Press, 1996.

Chen S.-H., Kambayashi Y., Sato H.:. Multi-Agent Applications with Evolutionary Computation and Biologically Inspired Technologies. IGI Global, 2011.

Dasgupta D., Nino L.:. Immunological Computation Theory and Applications. Auerbach, 2008.

Digalakis J., Margaritis K.:. An experimental study of benchmarking functions for evolutionary algorithms. International Journal of Computer Mathemathics,

(4):403–416, April 2002.

Dreżewski R.:. Co-evolutionary multi-agent system with speciation and resource sharing mechanisms. Computing and Informatics, 25(4):305–331, 2006.

Dreżewski R., Sepielak J., Siwik L.:. Classical and agent-based evolutionary algorithms for investment strategies generation. In Brabazon A., O’Neill M., editors,

Natural Computing in Computational Finance, volume 185 of Studies in Computational Intelligence, pages 181–205. Springer-Verlag, 2009.

Kisiel-Dorohinicki M.:. Agent-oriented model of simulated evolution. In Grosky W. I., Plasil F., editors, SofSem 2002: Theory and Practice of Informatics, volume 2540 of LNCS. Springer-Verlag, 2002.

Kisiel-Dorohinicki M., Dobrowolski G., Nawarecki E.:. Agent populations as computational intelligence. In Rutkowski L., Kacprzyk J., editors, Neural Networks and Soft Computing, pages 608–614. Physica Verlag, 2002.

Mahalanobis P.:. On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India, 2(1):49–55, 1936.

Sarker R., Ray T.:. Agent-Based Evolutionary Search, volume 5 of Adaptation, Learning and Optimization. Springer, 1 edition, 2010.

Schaefer R., Kołodziej J.:. Genetic search reinforced by the population hierarchy. Foundations of Genetic Algorithms, 7, 2003.

Siwik L., Dreżewski R.:. Agent-based multi-objective evolutionary algorithms with cultural and immunological mechanisms. In dos Santos W. P., editor, Evolutionary computation, pages 541–556. In-Teh, 2009.

Wierzchoń S.:. Function optimization by the immune metaphor. Task Quaterly, 6(3):1–16, 2002.

Wróbel K., Torba P., Paszyński M., Byrski A.:. Evolutionary multi-agent computing in inverse problems. Computer Science (accepted for printing), 2013.

Zhong W., Liu J., Xue M., Jiao L.:. A multiagent genetic algorithm for global numerical optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(2):1128–1141, 2004.

Downloads

Published

2013-06-20

How to Cite

Byrski, A. (2013). Tuning of agent-based computing. Computer Science, 14(3), 491. https://doi.org/10.7494/csci.2013.14.3.491

Issue

Section

Articles

Most read articles by the same author(s)