INFLUENCE OF ANNEALING CONDITIONS ON THE PROPERTIES AND MICROSTRUCTURE OF STEEL COMPOSITES
DOI:
https://doi.org/10.7494/mafe.2014.40.1.33Keywords:
composites, annealing, properties, diboride titaniumAbstract
Samples made of AISI 316L stainless steel reinforced with 8 vol.% TiB2 particles were prepared using high pressure-high temperature (HP-HT) method. Next, the composites were annealed at temperature of 1200°C for different holding times. The influence of annealing temperature and time on the properties and microstructure of AISI316L+8% vol.TiB2 composites was investigated. The structural studies showed formation of phases containing chromium, molybdenum and boron.
Downloads
References
P. He, X. Yue, J. Zhang, Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer, Materials Science and Engeenering A, 486 (2008) 171–176
E. Emadoddin, M. Tajally, M. Masoumi, Damping behavior of Al/SiCP multilayer composite manufactured by roll bonding, Materials & Design, 42 (2012) 334–338
A. Mazahery, M. O. Shabani, Tribological behaviour of semisolid-semisolid compocast Al–Si matrix composites reinforced with TiB2 coated B4C particulate, Ceramics International 38 (2012) 1887–189
S. Nagarajan, B. Dutta, The effect of SiC particles on the size and morphology of eutectic silicon in cast A356/SiC composites, Composites Science and Technology, 59 (1999) 897–902
H. Pelletier, D. Muller, P. Mille, A. Cornet, J.J. Grob, Dose effect on mechanical properties of high-energy nitrogen implanted 316L stainless steel, Surface and Coating Technology 151 (2002) 377
J. Rawers, F. Crogdon, R. Krabbe, N. Duttlinger, Tensile characteristics of nitrogen enhanced powder injection moulded 316L stainless steel, Powder Metallurgy 39 (1996) 125
I. Ucok, T. Ando, N.J. Grant, Property enhancement in Type 316L stainless steel by spray forming, Materials Science and Engeenering A, 133A (1991) 284
X.H. Chen, J. Lu, L. Lu, K. Lu Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Materialia 52 (2005) 1039–1044
A. Farid, S. Guo, F. C., P. Feng, T. Lin, TiB2 and TiC stainless steel matrix composites, Materials Letters 61 (2007) 189–191
S.C. Tjong, K.C. Lau, Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles Composites Science and Technology, 60 (2000) 1141–1146
D.H. Bacon, L. Edwards, J.E. Moffatt, M.E. Fitzpatrick, Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride, International Journal of Fatigue, 48 (2013) pp. 39–47
Y. Wang, Z.Q. Zhang, H.Y. Wang, B.X. Ma, Q.C. Jiang, Effect of Fe content in Fe–Ti–B system on fabricating TiB2 particulate locally reinforced steel matrix composites, Materials Science and Engineering A, 422 (2006) 339–34
I.Sulima, P. Klimczyk, P.Malczewski, Effect of TiB2 particles on the tribological properties of stainless steel matrix composites, Acta Metallurgica Sinica (English Letter), 27, 1 (2014) 12–18
I.Sulima, L.Jaworska, P.Figiel, Influence of processing parameters and different content of TiB2 ceramics on the properties of composites sintered by high temperature –high pressure (HT-HP) method, Archives of Metallurgy and Materials, 2014, Vol. 59, Issue 1, DOI: 10.2478/amm-2014-0033
L. Jaworska, Ceramic cutting –edge materials, Tooling Materials, The Institute of Advanced Manufacturing technology, Krakow, 2011.
L. Jaworska, Wysokociśnieniowe spiekanie proszków diamentowych, Prace IOS, seria Zeszyty Naukowe, nr 82, Kraków, 2002
International Standard, Fine ceramics (advanced ceramics, advanced technical ceramics)- Determination of friction and wear characteristics of monolithic ceramics by ball-on-disc method, ISO 20808:2004(E)