Exploratory analysis of elements in incineration bottom ash with numerous values below the detection limit using selected substitution methods

Authors

DOI:

https://doi.org/10.7494/geol.2025.51.4.413

Keywords:

incineration bottom ash, robust regression on order statistics, tobit regression, left-censored, exploratory data analysis

Abstract

This study investigates the influence of substitution methods for left-censored values on exploratory data analysis (EDA) of the incineration bottom ash (IBA). IBA, a by-product of municipal solid waste incineration, contains a wide range of economically valuable elements, many of which are frequently reported below detection limits due to analytical constraints. The study aims to evaluate the impact of different substitution methods on descriptive statistics, correlation analysis, and regression modeling outcomes. Four widely used substitution approaches were compared: (i) replacement with half of the detection limit, (ii) random values from a uniform distribution, (iii) robust regression on order statistics (ROS), and (iv) tobit regression (applied in both small and large variants). Five trace elements with different proportions of censored values (13–67%) were analyzed using a dataset of 52 weekly samples collected throughout 2021 at the Krakow Thermal Waste Treatment Plant. The impact of each method was assessed using descriptive statistics, Pearson correlation matrices, and multiple linear regression models. Additional analyses incorporated 11 auxiliary elements to enhance correlation and regression model robustness.
The results show that substitution methods significantly affect data distributions, particularly for elements with high censoring rates. ROS and tobit regression produced more stable statistical outputs and narrower histograms compared to simpler methods. Furthermore, regression model performance improved with substitution compared to raw data, with tobit methods demonstrating the highest accuracy for elements with strong inter-element correlations. The findings provide methodological guidance for reliable data handling in IBA analysis and recovery assessments.

Downloads

Download data is not yet available.

References

Aitchison J., 2003. The Statistical Analysis of Compositional Data. Blackburn Press.

Back S. & Sakanakura H., 2022. Comparison of the efficiency of metal recovery from wet- and dry-discharged municipal solid waste incineration bottom ash by air table sorting and milling. Waste Management, 154, 113–125. https://doi.org/10.1016/j.wasman.2022.08.023

Brunner P. H. & Rechberger, H., 2016. Handbook of Material Flow Analysis. CRC Press. https://doi.org/10.1201/9781315313450

Buccianti, A. & Grunsky, E., 2014. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration, 141, 1–5. https://doi.org/10.1016/j.gexplo.2014.03.022

Bunge R., 2019. Recovery of metals from waste incinerator bottom ash. https://www.datocms-assets.com/134367/1725032266-bunge_metalle_rueckgewinnung_internetversion.pdf (access: july 2025)

Clifford Cohen A., 2016. Truncated and Censored Samples. CRC Press. https://doi.org/10.1201/b16946

The Environmental Protection Agency, 2006. Data Quality Assesment: Statistical Methods for Practitioners. https://nepis.epa.gov/Exe/ZyNET.exe/900B0D00.txt?ZyActionD=ZyDocument&Client=EPA&Index=2006 Thru 2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp= (access: july 2025)

Filzmoser P., Hron K. & Reimann C., 2009. Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of The Total Environment, 407(23), 6100–6108. https://doi.org/10.1016/j.scitotenv.2009.08.008

Funari V., Braga R., Bokhari S. N. H., Dinelli E. & Meisel T., 2015. Solid residues from Italian municipal solid waste incinerators: A source for “‘critical’” raw materials. Waste Management, 45, 206–216. https://doi.org/10.1016/j.wasman.2014.11.005

Helsel D. R., 1990. Less than obvious - statistical treatment of data below the detection limit. Environmental Science & Technology, 24(12), 1766–1774. https://doi.org/10.1021/es00082a001

Helsen D., 2005. Nondetects and Data Analysis : Statistics for Censored Environmental Data. Hoboken, N.J.: Wiley-Interscience.

Jędrusiak R., Bielowicz B. & Drobniak A., 2023. From waste to value: Recovering critical raw materials from urban mines in the European Union And United States. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 39(3), 43–63. https://doi.org/10.24425/gsm.2023.147557

Kaplan E. L. & Meier P., 1992. Nonparametric Estimation from Incomplete Observations. In S. Kotz & N. L. Johnson (Eds.), Breakthroughs in Statistics: Methodology and Distribution (pp. 319–337). Springer New York. https://doi.org/10.1007/978-1-4612-4380-9_25

Mikšová D., Filzmoser P. & Middleton M., 2020. Imputation of values above an upper detection limit in compositional data. Computers & Geosciences, 136, 104383. https://doi.org/10.1016/j.cageo.2019.104383

Morf L. S., Gloor R., Haag O., Haupt M., Skutan S., Lorenzo F. Di, & Böni, D., 2013. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant. Waste Management, 33(3), 634–644. https://doi.org/10.1016/j.wasman.2012.09.010

Nørgaard K. P., Hyks J., Mulvad J. K., Frederiksen J. O. & Hjelmar O., 2019. Optimizing large-scale ageing of municipal solid waste incinerator bottom ash prior to the advanced metal recovery: Phase I: Monitoring of temperature, moisture content, and CO2 level. Waste Management, 85, 95–105. https://doi.org/10.1016/j.wasman.2018.12.019

Polski Komitet Normalizacyjny., 2006. PN-EN 14899 Charakteryzowanie odpadów - Pobieranie próbek materiałów - Struktura przygotowania i zastosowania planu pobierania próbek.

Rodrigues G. M., Ortega E. M. M., Cordeiro G. M. & Vila, R., 2022. An Extended Weibull Regression for Censored Data: Application for COVID-19 in Campinas, Brazil. Mathematics, 10(19). https://doi.org/10.3390/math10193644

Singh A. & Nocerino J., 2002. Robust estimation of mean and variance using environmental data sets with below detection limit observations. Chemometrics and Intelligent Laboratory Systems, 60(1), 69–86. https://doi.org/10.1016/S0169-7439(01)00186-1

Skutan S., Gloor R. & Morf L., 2018. Sampling, sample preparation and analysis of solid residues from thermal waste treatment and its processing products. Zar Methods Report. https://www.researchgate.net/publication/323116186_ZAR_METHODS_REPORT_Sampling_sample_preparation_and_analysis_of_solid_residues_from_thermal_waste_treatment_and_its_processing_products (access: July 2025)

Šyc M., Simon F. G., Hykš J., Braga R., Biganzoli L., Costa G., Funari V. & Grosso M., 2020. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. Journal of Hazardous Materials, 393(February). https://doi.org/10.1016/j.jhazmat.2020.122433

Tekindal M.A., 2021. Evaluation of Parametric Method Performance for Left-Censored Data and Recommendation of Using for Covid-19 Data Analysis. Eurasian Journal of Medicine and Oncology 5(2): 132-143. https://doi.org/10.14744/ejmo.2021.90258

Tekindal M. A., Erdoğan B. D. & Yavuz Y., 2017. Evaluating Left-Censored Data Through Substitution, Parametric, Semi-parametric, and Nonparametric Methods: A Simulation Study. Interdisciplinary Sciences: Computational Life Sciences, 9(2), 153–172. https://doi.org/10.1007/s12539-015-0132-9

Tobin J., 1958. Estimation of Relationships for Limited Dependent Variables. Econometrica, 26(1), 24. https://doi.org/10.2307/1907382

Verbovšek T., 2011. A comparison of parameters below the limit of detection in geochemical analyses by substitution methods. Mater. Geoenviron., 58, 393–404.

Downloads

Published

2025-12-30

Issue

Section

Articles

How to Cite

Chuchro, M., Zaręba, M., & Jędrusiak, R. (2025). Exploratory analysis of elements in incineration bottom ash with numerous values below the detection limit using selected substitution methods. Geology, Geophysics and Environment, 51(4), 413–426. https://doi.org/10.7494/geol.2025.51.4.413