Rare earth elements in supergene zone: a case study of the xenotime-(Y)-chernovite-(Y) solid solution from Rędziny, Sudetes, SW Poland
DOI:
https://doi.org/10.7494/geol.2025.51.3.301Keywords:
REE-bearing minerals, xenotime-(Y), chernovite-(Y), solid-solution, alterationAbstract
Rare earth element (REE) mineralization has been documented at Rędziny, located on the eastern margin of the Karkonosze granite (Sudetes, Poland). Minerals of the REE[(As,P)O₄] group with a tetragonal zircontype structure, primarily xenotime-(Y)-chernovite-(Y), Y(PO4)-Y(AsO4) solid solutions, have been identified. These minerals occur as euhedral grains and also as intergrowths with secondary arsenates and silicates, filling cracks, fractures, and voids. Their textural diversity and paragenetic relationships with Ca-, Cu-, Pb-, and Bi-bearing arsenates indicate a crystallization sequence involving successive mineral-forming episodes. Local enrichments in REEs have also been recorded in common supergene arsenates, such as Ca(Pb)-Cu phases including conichalcite (CaCu(AsO4)(OH)) and duftite (PbCu(AsO4)(OH)). Minerals of the xenotime-(Y)-chernovite-(Y) solid solution correspond to intermediate compositions, with the chernovite end-member molar fraction ranging from 0.46 to 0.89. Based on EPMA analyses, yttrium is the dominant cation, accompanied by considerable amounts of middle rare earth elements (MREEs), especially neodymium (up to 12.60 wt.%; 0.21 apfu), samarium (up to 10.39 wt.%; 0.167 apfu), and gadolinium (up to 6.72 wt.%; 0.107 apfu). Some chemical compositions also show a trend towards the gasparite-(LREE) (LREE(AsO4)) compositional field. Xenotime-(Y)-chernovite-(Y) minerals display microporosity, likely resulting from dissolution, metasomatic alteration, and subsequent recrystallization. The REEs at Rędziny likely originated from both evolved, late-stage hydrothermal fluids and rocks of the metamorphic envelope of the Karkonosze granite, where REEs were mobilized by post-magmatic fluids. Subsequent supergene processes may have further enhanced secondary enrichment.
Downloads
References
Alekseev V.I. & Marin Y.B., 2013. A tribute to Nicolai Pavlovich Yushkin, one of the discoverers of chernovite. Chernovite-(Y) and other arsenic minerals in rare-metal granites and greisens of the Far East. Geology of Ore Deposits, 55(7), 601–606. https://doi.org/10.1134/S1075701513070039.
Balaram V., 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005.
Berg G., 1913. Die Erzlagerstätten der nördlichen Sudeten. Zeitschr, zum XII Allgemeinen Deutschen Bergmannstage in Breslau. Beiträge zur Geologie Ostdeutschlands, Breslau.
Borkowska M., 1966. Petrografia granitu Karkonoszy. Geologica Sudetica, 2(1), 7–119.
Cabella R., Lucchetti G. & Marescotti P., 1999. Occurrence of LREE- and Y-arsenates from a Fe-Mn deposit, Ligurian Briançonnais Domain, Maritime Alps, Italy. The Canadian Mineralogist, 37(4), 961–972.
Chaloupský J., 1965. Metamorphic development of the Krkonoše crystalline complex. Krystalinikum, 3, 31–54.
Chaloupský J., Červenka J., Jetel J., Králik F., Libalová, J., Píchová E., Pokorný J., Pošmourný K., Sekyra J., Shrbený O., Šalanský K., Šrámek J. & Václ J., 1989. Geologie Krkonoš a Jizerských hor [Geology of the Krkonoše and Jizera Mountains]. Ústředni Ústav Geologický, Praha.
Duthou J.L., Couturie J.P., Mierzejewski M.P. & Pin C., 1991. Oznaczenia wieku granitu Karkonoszy metodą izochronową, rubinowo-strontową na podstawie całych próbek skalnych [Next dating of granite sample from the Karkonosze Mountains using Rb-Sr total rock isochrone method]. Przegląd Geologiczny, 39(2), 75–78.
Förster H.J., Ondrejka M. & Uher P., 2011. Mineralogical responses to subsolidus alteration of granitic rocks by oxidizing As-bearing fluids: REE arsenates and As-rich silicates from the Zinnwald granite, eastern Erzgebirge, Germany. The Canadian Mineralogist, 49(4), 913–930. https://doi.org/10.3749/canmin.49.4.913.
Feigelson R.S., 1967. Crystal growth of rare-earth orthoarsenates. Journal of the American Ceramic Society, 50(8), 483–486. https://doi.org/10.1111/j.1151-2916.1967.tb15150.x.
Gołębiowska B., Pieczka A. & Franus W., 2006. Olivenite-adamite solid solution from oxidation zone in Rędziny (West Sudetes, Poland). Mineralogia Polonica, 37(2), 97–107. https://doi.org/10.2478/v10002-007-0001-1.
Gołębiowska B., Pieczka A. & Parafiniuk J., 2012. Substitution of Bi for Sb and As in minerals of the tetrahedrite series from Rędziny, Lower Silesia, southwestern Poland. The Canadian Mineralogist, 50(2), 267–279. https://doi.org/10.3749/canmin.50.2.267.
Gołębiowska B., Włodek A., Pieczka A., Borkiewicz O. & Polak M., 2016. The philipsbornite-segnitite solid-solution series from Rędziny, eastern metamorphic cover of the Karkonosze granite (SW Poland). Annales Societatis Geologorum Poloniae, 86(1), 73–83. https://doi.org/10.14241/asgp.2015.036.
Gorelikova N.V, Semenyak B.I., Korostelev P.G., Taskaev V.I., Balashov F.V. & Rassulov V.A., 2022. Rare earth minerals in the rare-metal greisens of the Verkhnee Deposit in the Khingan-Olonoisky District of the Amur Region, Russia. Russian Journal of Pacific Geology, 16(6), 608–623. https://doi.org/10.1134/S1819714022060033.
Graeser S. & Schwander H., 1987. Gasparite-(Ce) and monazite-(Nd): Two new minerals to the monazite group from the Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 67, 103–113.
Graeser S., Schwander H. & Stalder H.A., 1973. A solid solution series between xenotime (YtPO4) and chernovite (YtAsO4). Mineralogical Magazine, 39(302), 145–151. https://doi.org/10.1180/MINMAG.1973.039.302.02.
HussariX, n.d. https://github.com/sem-geologist/HussariX.
Kasatkin A.V., Stepanow S.Yu., Tsyganko M.V., Škoda R., Nestol F., Plášil J., Makovicky E., Agakhanov A.A. & Palamarchuk R.S., 2022. Mineralogy of the Vorontsovskoe gold deposit (Northern Urals). Mineralogy, 8(1), 5–93. http://doi.org/10.35597/2313-545X-2022-8-1-1.
Kolitsch U. & Holtstam D., 2004a. Crystal chemistry of REEXO4 compounds (X = P, As, V). I. Paragenesis and crystal structure of phosphatian gasparite-(Ce) from the Kesebol Mn-Fe-Cu deposit, Västra Götaland, Sweden. European Journal of Mineralogy, 16(1), 111–116. https://doi.org/10.1127/0935-1221/2004/0016-0111.
Kolitsch U. & Holtstam D., 2004b. Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields. European Journal of Mineralogy, 16(1), 117–126. https://doi.org/10.1127/0935-1221/2004/0016-0117.
Kozłowski A. & Sachanbiński M., 2007. Karkonosze intragranitic pegmatites and their minerals. [in:] Kozłowski A. & Wiszniewska J. (eds.), Granitoids in Poland, Archivum Mineralogiae Monograph, 1, Faculty of Geology of the Warsaw University, Warszawa, 155–178.
Kröner A., Hegne, E., Hammer J., Haase G., Bielicki K.H., Krauss M. & Eidam J., 1994. Geochronology and Nd-Sr systematics of Lusatian granitoids – significance for the evolution of the Variscan orogen in East-Central Europe. Geologische Rundschau, 83(2), 357–376. https://doi.org/10.1007/BF00210551.
Kryza R. & Mazur S., 1995. Contrasting metamorphic paths in the SE part of the Karkonosze-Izera block (Western Sudetes, SW Poland). Neues Jahrbuch für Mineralogie, Abhandlungen, 169, 157–192.
Kryza R., Schaltegger U., Oberc-Dziedzic T., Pin C. & Ovtcharova M., 2014. Geochronology of a composite granitoid pluton: A high-precision ID-TIMS U-Pb zircon study of the Variscan Karkonosze Granite (SW Poland). International Journal of Earth Sciences, 103(3), 683–696. https://doi.org/10.1007/s00531-013-0995-00.
Kusiak M.A., Dunkley D.J., Słaby E., Martin H. & Budzyń B., 2009. Sensitive high-resolution ion microprobe analysis of zircon reequilibrated by late magmatic fluids in a hybridized pluton. Geology, 37(12), 1063–1066. https://doi.org/10.1130/G30048A.1
Kusiak M.A., Williams I.S., Dunkley D.J., Konečny P., Słaby E. & Martin H., 2014. Monazite to the rescue: U-Th-Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. Chemical Geology, 364, 76–92. https://doi.org/10.1016/j.chemgeo.2013.11.016.
Li M.Y.H., Zhou M.F. & Williams-Jones A.E., 2019. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South China. Economic Geology, 114(3), 541–568. https://doi.org/10.5382/econgeo.4642.
Machowiak K. & Armstrong R., 2007. SHRIMP U-Pb zircon age from the Karkonosze granite. Mineralogia Polonica – Special Papers, 31, 193–196.
Mazur S., 1995. Strukturalna i metamorficzna ewolucja wschodniej okrywy granitu Karkonoszy w południowej części Rudaw Janowickich i Grzbiecie Lasockim [Structural and metamorphic evolution of the country rocks at the eastern contact of the Karkonosze granite in the southern Rudawy Janowickie Mts and Lasocki Range]. Geologia Sudetica, 29(1), 31–103.
Merlet C., 1994. An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363–376. https://doi.org/10.1007/BF01244563.
Migdisov A., Guo X., Nisbet H., Xu H. & Williams-Jones A.E., 2019. Fractionation of REE, U, and Th in natural ore-forming hydrothermal systems: Thermodynamic modelling. The Journal of Chemical Thermodynamics, 128, 305–319. https://doi.org/10.1016/j.jct.2018.08.032.
Mikulski S., 2007. Metal ore potential of the parent magma of granite – the Karkonosze massif example. [in:] Kozłowski A. & Wiszniewska J. (eds.), Granitoids in Poland, Archivum Mineralogiae Monograph, 1, Faculty of Geology of the Warsaw University, Warszawa, 123–145.
Mil K., Gołębiowska B., Pieczka A. & Włodek A., 2024. Titanite from the NYF-type pegmatites of Szklarska Poręba Huta quarry, Karkonosze granite massif, SW Poland. Acta Geologica Polonica, 74(3), 20. https://doi.org/10.24425/agp.2024.151750.
Mochnacka K., Oberc-Dziedzic T., Mayer W. & Pieczka A., 2015. Ore mineralization related to geological evolution of the Karkonosze-Izera Massif (the Sudetes, Poland) – towards a model. Ore Geology Reviews, 64, 215–238. https://doi.org/10.1016/j.oregeorev.2014.07.00.1.
Ni Y., Hughes J.M. & Mariano A.N., 1995. Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80(1–2), 21–26. https://doi.org/10.2138/am-1995-1-203.
Oberc J., 1965. Stanowisko tektoniczne granitu Karkonoszy [The tectonic position of the Karkonosze granite]. Biuletyn Instytutu Geologicznego, 191, 69–109.
Oberc-Dziedzic T., Kryza R., Pin C., Mochnacka K. & Larionov A., 2009. The orthogneiss and schist complex of the Karkonosze-Izera Massif (Sudetes, SW Poland): U-Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geologica Sudetica, 41, 3–24.
Oberc-Dziedzic T., Kryza R., Mochnacka K., & Larionov, A., 2010. Ordovician passive continental margin magmatism in the Central-European Variscides. U-Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. International Journal of Earth Sciences, 99(1), 27–46. https://doi.org/10.1016/j.oregeorev.2014.07.001.
Oliver G.J.H., Corfu F., & Krough T.E., 1993. U-Pb ages from SW Poland: Evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society of London, 150, 355–369. https://doi.org/10.1144/gsjgs.150.2.0355.
Ondrejka M., Uher P., Pršek J. & Ozdín D., 2007. Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: Composition and substitutions in the (REE,Y)XO4 system (X = P, As, Si, Nb, S). Lithos, 95(1–2), 116–129. https://doi.org/10.1016/j.lithos.2006.07.019.
Ondrejka M., Bačík P., Majzlan J., Uher, P., Ferenc Š., Mikuš T., Števko M., Čaplovičová M., Milovská S., Molnárová A., Rößler C. & Matthes C., 2024. Xenotime-(Gd), a new Gd-dominant mineral of the xenotime group from the Zimná Voda REE-U-Au quartz vein, Prakovce, Western Carpathians, Slovakia. Mineralogical Magazine, 88(5), 613–622. https://doi.org/10.1180/mgm.2024.62.
Pagliaro F., Lotti P., Guastoni A., Rotiroti N., Battiston T. & Gatta G., 2022. Crystal chemistry and miscibility of chernovite-(Y), xenotime-(Y), gasparite-(Ce) and monazite-(Ce) from Mt. Cervandone, Western Alps. Italy Mineralogical Magazine, 86(1), 150–167. https://doi.org/10.1180/mgm.2022.5.
Pagliaro F., Comboni D., Battiston T., Krüger H., Hejny C., Kahlenberg V., Gigli L., Glazyrin K., Liermann H.-P., Garbarino G., Gatta G.D. & Lotti P., 2024. Comparative thermal and compressional behaviour of natural xenotime-(Y), chernovite-(Y) and monazite-(Ce). Mineralogical Magazine, 88(6), 682–697. https://doi.org/10.1180/mgm.2024.70.
Parafiniuk J., 2003. Secondary bismuth and tellurium minerals from Rędziny (Rudawy Janowickie, SW Poland). Mineralogia Polonica, 34(2), 3–14.
Parafiniuk J. & Domańska J., 2002. Bismuth minerals from Rędziny (Rudawy Janowickie, SW Poland). Mineralogia Polonica, 33(2), 3–14.
Parafiniuk J., Pieczka A. & Gołębiowska B., 2008. Compositional data for ikunolite from Rędziny, Rudawy Janowickie, Lower Silesia, Poland. The Canadian Mineralogist, 46(5), 1305–1315. https://doi.org/10.3749/canmin.46.5.1305.
Pieczka A., Gołębiowska B. & Parafiniuk J., 2009. Conditions of formation of polymetallic mineralization in the eastern envelope of the Karkonosze granite: The case of Rędziny, southwestern Poland. The Canadian Mineralogist, 47(4), 765–786. https://doi.org/10.3749/canmin.47.4.765
Pieczka A., Gołębiowska B. & Parafiniuk J., 2011. Gold in sulfide-telluride assemblages at Rędziny, Rudawy Janowickie Range. [in:] Kozłowski A. & Mikulski S.Z. (eds.), Gold in Poland, Archivum Mineralogiae Monograph, 2, Faculty of Geology of the Warsaw University, Warszawa, 119–134.
Siuda R. & Gołębiowska B., 2011. Nowe dane o minerałach wietrzeniowych złoża Miedzianka-Ciechanowice w Rudawach Janowickich (Dolny Śląsk, Polska) [New data on supergene minerals from Miedzianka-Ciechanowice deposit in the Rudawy Janowickie Mountains (Lower Silesia, Poland)]. Przegląd Geologiczny, 59(3), 226–234.
Słaby E. & Martin H., 2008. Mafic and felsic magma interaction in granites: The Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49(2), 353–391. https://doi.org/10.1093/petrology/egm085.
Syczewski M.D., Siuda R., Rohovec J., Matoušková Š. & Parafiniuk J., 2022. Uranyl minerals from abandoned Podgórze mine (Sudetes Mountains, SW Poland) and their REE content. Minerals, 12(3), 307. https://doi.org/10.3390/min12030307.
Teisseyre J.H., 1971. O wieku i następstwie warstw w skałach metamorficznych Rudaw Janowickich i Grzbietu Lasockiego [On the age and sequence of beds in the metamorphic rocks of the Rudawy Janowickie range and Lasocki Ridge]. Geologia Sudetica, 5(1), 165–210.
Teisseyre J., 1973. Skały metamorficzne Rudaw Janowickich i Grzbietu Lasockiego [Metamorphic rocks of the Rudawy Janowickie and Lasocki Range]. Geologia Sudetica, 8(1), 7–120.
Vereshchagin O.S., Britvin S.N., Perova E.N., Brusnitsyn A.I., Polekhovsky Y.S., Shilovskikh V.V., Bocharov V.N., van der Burgt A., Cuchet S. & Meisser N., 2019. Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, Central Kazakhstan, and metamorphic rocks of the Wanni glacier, Switzerland. American Mineralogist, 104(10), 1469–1480. https://doi.org/10.2138/am-2019-7028.
Warr L.N., 2021. IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291–320. https://doi.org/10.1180/mgm.2021.43
Wołkowicz K. & Wołkowicz S., 1985. Mineralizacja kruszcowa wschodniej strefy kontaktowej granitu karkonoskiego na obszarze Mniszkowa – Rędzin [Ore mineralization at eastern contact zone of the Karkonosze granite in the Mniszków – Rędziny area]. Kwartalnik Geologiczny, 29(2), 237–254.
Zimnoch E., 1978. Mineralizacja kruszcowa złoża Miedzianka w Sudetach. Biuletyn Państwowego Instytutu Geologicznego, 308(1), 91–134.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)
