Interaction of silty loam soil on the change of soil retention capacity and soil compaction following subsoiling
DOI:
https://doi.org/10.7494/geol.2025.51.3.271Keywords:
soil compaction, subsoiling, soil moisture, climate change, sustainable agricultureAbstract
The subsoiling of arable soils as part of a strategy against excessive compaction and the resulting plow pan can be successfully used as a pro-retention treatment. The study of changes in the physical and water properties of soil as a result of subsoiling was carried out on three sites: Wojnowice, Strzybnik, and Owsiszcze, located in the Racibórz district, Śląskie Voivodeship (Poland), in a silty-loam soil. A total of five soil profiles (0–150 cm) were analyzed before and after subsoiling. The experiment used a seven-tine Maschio subsoiler at a depth of 50–60 cm between 2012–2014. The physical (e.g., soil bulk density, soil organic matter) and water (e.g., maximum water capacity, field water capacity, permanent wilting point, total plant available water) properties of the soil were determined before and after subsoiling, taking into account the division into layers: 0–25 cm, 25–50 cm, and 50–150 cm. Statistical analyses were used to check changes in soil physical and water parameters. The results show that the subsoiling treatment caused a statistically significant decrease in soil compaction (bulk density) at all three layers and increased moisture in the range of total plant available water in the subsoil layer (25–50 cm). Subsoiling in silty-loam soil will enable the soil’s retention potential to be used, especially in dry years.
Downloads
References
Aleksander-Kwaterczak U. & Rajca A., 2015. Urban soil contamination with lead and cadmium in the playgrounds located near busy streets in Cracow (South Poland). Geology, Geophysics & Environmental, 41(1), 7–16. https://doi.org/10.7494/geol.2015.41.1.7.
Allan C., Xia J. & Pahl-Wostl C., 2013. Climate change and water security: Challenges for adaptive water management. Current Opinion in Environmental Sustainability, 5(6), 625–632. https://doi.org/10.1016/j.cosust.2013.09.004.
Borek Ł. & Bogdał A., 2018. Soil water retention of the Odra river alluvial soils (Poland): Estimating parameters by RETC model and laboratory measurements. Applied Ecology and Environmental Research, 16(4), 4681–4699. https://doi.org/10.15666/aeer/1604_46814699.
Borek Ł., Bogdał A. & Kowalik T., 2021. Use of pedotransfer functions in the Rosetta model to determine saturated hydraulic conductivity (Ks) of arable soils: A case study. Land, 10(9), 959. https://doi.org/10.3390/land10090959.
Bourrié G. (ed.), 2018. Soils as a Key Component of the Critical Zone 3: Soils and Water Circulation. Geosciences Series. Soils Set, 3, ISTE Ltd and John Wiley & Sons Inc., London.
Brown C.E., 1998. Coefficient of Variation. [in:] Applied Multivariate Statistics in Geohydrology and Related Sciences, Springer, Berlin, Heidelberg, 155–157. https://doi.org/10.1007/978-3-642-80328-4_13.
Cosgrove W.J. & Loucks D.P., 2015. Water management: Current and future challenges and research directions. Water Resources Research, 51(6), 4823–4839. https://doi.org/10.1002/2014WR016869.
Dobarco M.R., Cousin I., Le Bas C. & Martin M.P., 2019. Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma, 336, 81–95. https://doi.org/10.1016/j.geoderma.2018.08.022.
Dodd M.B. & Lauenroth W.K., 1997. The influence of soil texture on the soil water dynamics and vegetation structure of a short grass steppe ecosystem. Plant Ecology, 133(1), 13–28. https://www.jstor.org/stable/20050537.
Drewry J.J. & Paton R.J., 2000. Effect of subsoiling on soil physical properties and dry matter production on a brown soil in Southland, New Zealand. New Zealand Journal of Agricultural Research, 43(2), 259–268. https://doi.org/10.1080/00288233.2000.9513426.
Evans S.D., Lindstrom M.J., Voorhees W.B., Moncrief J.F. & Nelson G.A., 1996. Effect of subsoiling and subsequent tillage on soil bulk density, soil moisture, and corn yield. Soil and Tillage Research, 38(1–2), 35–46. https://doi.org/10.1016/0167-1987(96)01020-3.
Fan Y., Gao D., Zhang L., Wang Y., Yan Z., Guo L., Huang T. & Qiao Y., 2025. Enhancing soil quality and nematode diversity through sustainable tillage and organic fertilization in the Loess Plateau’s semi-arid farmlands. Agriculture, Ecosystems & Environment, 383, 109542. https://doi.org/10.1016/j.agee.2025.109542.
Genuchten M.Th., van, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Ghosh U. & Daigh A.L.M., 2020. Soil compaction problems and subsoiling effects on potato crops: A review. Crop Forage & Turfgrass Management, 6(1), e20030. https://doi.org/10.1002/cft2.20030.
Hameed M., Moradkhani H., Ahmadalipour A., Moftakhari H., Abbaszadeh P. & Alipour A.A., 2019. Review of the 21st century challenges in the food-energy-water security in the Middle East. Water, 11(4), 682. https://doi.org/10.3390/w11040682.
Hong S.Y., Minasny B., Han K.H., Kim Y. & Lee K., 2013. Predicting and mapping soil available water capacity in Korea. PeerJ, 1, e71. https://doi.org/10.7717/peerj.71.
Iglesias A. & Garrote L., 2015. Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management, 155, 113–124. https://doi.org/10.1016/j.agwat.2015.03.014.
Jiao Y., Yi Y., Feng L., Sun Z., Yang N., Yu J., Zheng M., Zheng L. & Zheng J., 2017. Effects of subsoiling on maize yield and water-use efficiency in a semiarid area. Open Life Sciences, 12(1), 386–392. https://doi.org/10.1515/biol-2017-0045.
Karmakar R., Das I., Dutta D. & Amitava Rakshit A., 2016. Potential effects of climate change on soil properties: A review. Science International, 4(2), 51–73. https://doi.org/10.17311/sciintl.2016.51.73.
Ket P., Oeurng C. & Degré A., 2018. Estimating soil water retention curve by inverse modelling from combination of in situ dynamic soil water content and soil potential data. Soil Systems, 2(4), 55. https://doi.org/10.3390/soilsystems2040055.
Kottek M., Grieser J., Beck C., Rudolf B. & Rubel F., 2006. World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130.
Leskiw L.A., Welsh C.M. & Zeleke T.B., 2012. Effect of subsoiling and injection of pelletized organic matter on soil quality and productivity. Canadian Journal of Soil Science, 92(1), 269–276.
Liu J., Zang C., Tian S., Liu J., Yang H., Jia S., You L., Liu B. & Zhang M., 2013. Water conservancy projects in China: Achievements, challenges and way forward. Global Environmental Change, 23(3), 633–643. https://doi.org/10.1016/j.gloenvcha.2013.02.002.
Martínez E.M., Cuesta S.C. & Cancela J.J., 2012. The efficiency of different estimation methods of hydro-physical limits. Soil Processes and Properties, 36(6), 1756–1768. https://doi.org/10.1590/S0100-06832012000600009.
Matula S., Mojrová M. & Špongrová K., 2007. Estimation of the soil water retention curve (SWRC) using pedotransfer functions (PTFs). Soil & Water Research, 2(4), 113–122. https://doi.org/10.17221/2106-SWR.
Mioduszewski W., 2014. Small (natural) water retention in rural areas. Journal of Water and Land Development, 20(1–3), 19–29.
Misra A.K., 2014. Climate change and challenges of water and food security. International Journal of Sustainable Built Environment, 3(1), 153–165. https://doi.org/10.1016/j.ijsbe.2014.04.006.
Mocek A. & Drzymała S., 2010. Geneza, analiza i klasyfikacja gleb [The genesis, analysis and classification of soils]. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań.
Morison J.I., Baker N.R., Mullineaux P.M. & Davies W.J., 2008. Improving water use in crop production. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1491), 639–658. https://doi.org/10.1098/rstb.2007.2175.
Ning T., Liu Z., Hu H., Li G. & Kuzyakov Y., 2022. Physical, chemical and biological subsoiling for sustainable agriculture. Soil and Tillage Research, 223, 105490. https://doi.org/10.1016/j.still.2022.105490.
Paluszek J., 2011. Kryteria oceny jakości fizycznej gleb uprawnych Polski [Criteria of evaluation of physical quality of Polish arable soils]. Acta Agrophysica – Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN w Lublinie. Rozprawy i Monografie, 2011(2), Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN, Lublin.
Panagos P., De Rosa D., Liakos L., Labouyrie M., Borrelli P. & Ballabio C., 2024. Soil bulk density assessment in Europe. Agriculture, Ecosystems & Environment, 364, 108907, https://doi.org/10.1016/j.agee.2024.108907.
Pikul J.L. & Aase J.K., 2003. Water infiltration and storage affected by subsoiling and subsequent tillage. Soil Science Society of America Journal, 67(3), 859–866. https://doi.org/10.2136/sssaj2003.8590.
Reichardt K. & Timm L.C., 2020. The soil as a water reservoir for plants. [in:] Soil, Plant and Atmosphere, Springer, Cham, 15–48. https://doi.org/10.1007/978-3-030-19322-5_3.
Reynolds W.D., Drury C.F., Tan C.S., Fox C.A. & Yang X.M., 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152(3–4), 252–263. https://doi.org/10.1016/j.geoderma.2009.06.009.
Richling A., Solon J., Macias A., Balon J., Borzyszkowski J. & Kistowski M. (red.), 2021. Regionalna geografia fizyczna Polski. Bogucki Wydawnictwo Naukowe, Poznań.
Schofield R.K., 1935. The pF of the water in soil. [in:] Transactions of the Third International Congress of Soil Science, Oxford, England, 1935: Volume II. Plenary Session Papers and the Presidential Address, T. Murby & Co., London, 37–48.
Senapati N., Stratonovitch P., Paul M.J. & Semenov M.A., 2019. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9), 2549–2560. https://doi.org/10.1093/jxb/ery226.
Shaheb M.R., Venkatesh R. & Shearer S.A., 2021. A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering, 46(4), 417–439. https://doi.org/10.1007/s42853-021-00117-7.
Siegmund-Schultze M., do Carmo Sobral M., Alcoforado de Moraes M.M.G., Almeida-Cortez J.S., Azevedo J.R.G., Candeias A.L., Cierjacks A., Gomes E.T.A., Gunkel G., Hartje V., Hattermann F.F., Kaupenjohann M., Koch H. & Köppel J., 2018. The legacy of large dams and their effects on the water-land nexus. Regional Environmental Change, 18(7), 1883–1888. https://doi.org/10.1007/s10113-018-1414-7.
Silva B.M., da Silva EA., de Oliveira G.C., Ferreira M.M. & Serafim M.E., 2014. Plant-available soil water capacity: Estimation methods and implications. Soil Processes and Properties, 38(2), 464–475. https://doi.org/10.1590/S0100-06832014000200011.
Soil Survey Staff, 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. 2nd ed. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook, 436, U.S. Government Print Office, Washington, DC, USA. https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil%20Taxonomy.pdf [access: 8.04.2025].
Sun M., Gao Z., Zhao W., Deng L., Deng Y., Zhao H., Ren A., Li G. & Yang Z., 2013. Effect of subsoiling in fallow period on soil water storage and grain protein accumulation of dryland wheat and its regulatory effect by nitrogen application. PLoS One, 8(10), e75191. https://doi.org/10.1371/journal.pone.0075191.
Stanisz A., 2006. Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. T. 1: Statystyki podstawowe. Wyd. 3. StatSoft Polska, Kraków.
Tóth B., Weynants M., Nemes A., Makó A., Bilas G. & Tóth G., 2015. New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science, 66(1), 226–238. https://doi.org/10.1111/ejss.12192.
Wang B., Deng J., Wang T., Hu H., Usman S. & Lan J., 2024. Innovative tillage practices to establish productive and sustainable forage production systems in degraded alfalfa pastures in semiarid regions. Land Degradation & Development, 35(18), 5804–5816. https://doi.org/10.1002/ldr.5332.
Wang L.Q., Yu X.F., Gao J.L., Ma D.L., Liu H.Y. & Hu S.P., 2024. Regulation of tillage on grain matter accumulation in maize. Frontiers in Plant Science, 15, 1373624. https://doi.org/10.3389/fpls.2024.1373624.
Wang S.B., Guo L.L., Zhou P.C., Wang X.J., Shen Y., Han H.F., Ning T.Y. & Han K., 2019. Effect of subsoiling depth on soil physical properties and summer maize (Zea mays L.) yield. Plant, Soil and Environment, 65(3), 131–137. https://doi.org/10.17221/703/2018-PSE.
Wu W., Wang S., Zhang L., Li J., Song Y., Peng C., Chen X., Jing L. & Chen H., 2020. Subsoiling improves the photosynthetic characteristics of leaves and water use efficiency of rainfed summer maize in the southern Huang-Huai-Hai Plain of China. Agronomy, 10(4), 465. https://doi.org/10.3390/agronomy10040465.
Xu Q., Liu S., Wan X., Jiang C., Song X. & Wang, J., 2012. Effects of rainfall on soil moisture and water movement in a subalpine dark coniferous forest in southwestern China. Hydrological Processes, 26(25), 3800–3809. https://doi.org/10.1002/hyp.8400.
Yang Y., Wu J., Zhao S., Mao Y., Zhang J., Pan X., He F. & van der Ploeg, M., 2021a. Impact of long‐term sub‐soiling tillage on soil porosity and soil physical properties in the soil profile. Land Degradation & Development, 32(10), 2892–2905. https://doi.org/10.1002/ldr.3874.
Yang Y., Wu J., Du Y-L., Gao C, Pan X., Tang D.W.S. & van der Ploeg M., 2021b. Short- and long-term straw mulching and subsoiling affect soil water, photosynthesis, and water use of wheat and maize. Frontiers in Agronomy, 3, 708075. https://doi.org/10.3389/fagro.2021.708075.
Yang Y., Liu H., Wu J., Gao C., Zhang S. & Tang D.W., 2024. Long‐term combined subsoiling and straw mulching conserves water and improves agricultural soil properties. Land Degradation & Development, 35(3), 1050–1060. https://doi.org/10.1002/ldr.4969.
Zhang J., Wang Z. & Luo X., 2018. Parameter estimation for soil water retention curve using the Salp Swarm Algorithm. Water, 10(6), 815. https://doi.org/10.3390/w10060815.
Zhang W., Li S., Xu Y., Wang Y., Liu X., Peng C. & Wang J., 2020. Residue incorporation enhances the effect of subsoiling on soil structure and increases SOC accumulation. Journal of Soils and Sediments, 20(10), 3537–3547. https://doi.org/10.1007/s11368-020-02680-6.
Zhang Y., Liu J., Xu X., Tian Y., Li Y. & Gao Q., 2010. The response of soil moisture content to rainfall events in semi-arid area of Inner Mongolia. Procedia Environmental Sciences, 2, 1970–1978. https://doi.org/10.1016/j.proenv.2010.10.211.
Zhao N., Yu F., Li C., Wang H., Liu J. & Mu W., 2014. Investigation of rainfall-runoff processes and soil moisture dynamics in grassland plots under simulated rainfall conditions. Water, 6(9), 2671–2689. https://doi.org/10.3390/w6092671.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)
