Surface water runoff estimation: a review of methods incorporating terrain shape
DOI:
https://doi.org/10.7494/geol.2025.51.3.243Keywords:
runoff, DEM, deep learning, machine learning, remote sensingAbstract
Surface runoff is a key variable in the water balance, representing excess water that exceeds soil infiltration capacity and is not absorbed by drains. Accurate estimation of surface runoff is crucial for flood prevention, optimizing agricultural water use, and detecting irregular water capture. Various computational approaches, including machine learning, deep learning, statistical models, and hydraulic simulations, have been developed to estimate runoff. However, despite extensive research, many models overlook the influence of terrain characteristics – such as topography, slope, and surface roughness – leading to potential inaccuracies in runoff prediction.
This study conducts a comprehensive bibliographic review of state-of-the-art research on surface runoff estimation, with a focus on methods that integrate digital terrain models (DTMs), remote sensing, and computational modeling techniques. Through this analysis, a specific research niche was identified and verified, highlighting the need for terrain-sensitive runoff models that better incorporate topographic variables into hydrological modeling. By evaluating and comparing existing methodologies, this review provides insights into the most effective approaches for runoff estimation and offers recommendations for selecting the appropriate models based on landscape and hydrological conditions. It also presents potential solutions that may pave the way for a better understanding of runoff processes.
Downloads
References
Adnan R.M., Petroselli A., Heddam S., Santos C.A.G. & Kisi O., 2021. Short-term rainfall-runoff modeling using several machine learning methods and a conceptual event-based model. Stochastic Environmental Research and Risk Assessment, 35(3), 597–616. https://doi.org/10.1007/s00477-020-01910-0.
Ajmal M., Waseem M., Kim D. & Kim T.-W., 2020. A pragmatic slope-adjusted curve number model to reduce uncertainty in predicting flood runoff from steep watersheds. Water, 12(5), 1469. https://doi.org/10.3390/w12051469.
Al-Safi H.I.J., Kazemi H. & Sarukkalige P.R., 2020. Comparative study of conceptual versus distributed hydrologic modeling to evaluate the impact of climate change on future runoff in unregulated catchments. Journal of Water and Climate Change, 11(2), 341–366. https://doi.org/10.2166/wcc.2019.180.
Ali S., Rahman A. & Shaik R., 2024. A review of event-based conceptual rainfall-runoff models: A case for Australia. Encyclopedia, 4(2), 966–983. https://doi.org/10.3390/encyclopedia4020062.
Angelakis A.N., Capodaglio A.G., Valipour M., Krasilnikoff J., Ahmed A.T., Mandi L., Tzanakakis V.A., Baba A., Kumar R., Zheng X., Min Z., Han M., Turay B., Bilgiç E. & Dercas N., 2023. Evolution of floods: From ancient times to the present times (ca 7600 BC to the present) and the future. Land, 12(6), 1211. https://doi.org/10.3390/land12061211.
Asadi S., Jimeno-Sáez P., López-Ballesteros A. & Senent-Aparicio J., 2024. Comparison and integration of physical and interpretable AI-driven models for rainfall-runoff simulation. Results in Engineering, 24, 103048. https://doi.org/10.1016/j.rineng.2024.103048.
Atharinafi Z. & Wijaya N., 2021. Land use change and its impacts on surface runoff in rural areas of the Upper Citarum watershed (case study: Cirasea sub-watershed). Journal of Regional and City Planning, 32(1), 36–55. https://doi.org/10.5614/jpwk.2021.32.1.3.
Barry E.S., Merkebu J. & Varpio L., 2022. State-of-the-art literature review methodology: a six-step approach for knowledge synthesis. Perspectives on Medical Education, 11(4), 281–288. https://doi.org/10.1007/s40037-022-00725-9.
Bartoletti N., Casagli F., Marsili-Libelli S., Nardi A. & Palandri L., 2018. Data-driven rainfall/runoff modeling based on a neuro-fuzzy inference system. Environmental Modeling & Software, 106, 35–47. https://doi.org/10.1016/j.envsoft.2017.11.026.
Beven K.J., 2012. Rainfall-Runoff Modeling: The Primer. John Wiley & Sons, Hoboken, NJ.
Bhusal A., Parajuli U., Regmi S. & Kalra A., 2022. Application of machine learning and process-based models for rainfall-runoff simulation in DuPage River Basin, Illinois. Hydrology, 9(7), 117. https://doi.org/10.3390/hydrology9070117.
Bista S., Singh U., Kayastha N., Ghimire B.N. & Talchabhadel R., 2021. Effects of source digital elevation models in assessment of gross runoff-river hydropower potential: A case study of West Rapti Basin, Nepal. Journal of Engineering Issues and Solutions, 1(1), 106–128. https://doi.org/10.3126/joeis.v1i1.36822.
Caviedes-Voullième D., Ahmadinia E. & Hinz C., 2021. Interactions of microtopography, slope, and infiltration cause complex rainfall-runoff behavior at the hillslope scale for single rainfall events. Water Resources Research, 57(7), e2020WR028127. https://doi.org/10.1029/2020WR028127.
Chen J., Tapley B., Rodell M., Seo K.-W., Wilson C., Scanlon B.R. & Pokhrel Y., 2020. Basin-scale river runoff estimation from GRACE gravity satellites, climate models, and in situ observations: a case study in the Amazon basin. Water Resources Research, 56(10), e2020WR028032. https://doi.org/10.1029/2020WR028032.
Chen T., Shu J., Han L., Tian G., Yang G. & Lv J., 2022. Modeling the effects of topography and slope gradient of an artificially formed slope on runoff, sediment yield, water and soil loss of sandy soil. CATENA, 212, 106060. https://doi.org/10.1016/j.catena.2022.106060.
Dalrymple T., 1960. Flood-Frequency Analyses: Manual of Hydrology: Part 3. U.S. Geological Survey. https://pubs.usgs.gov/publication/wsp1543A.
Fanta S.S. & Sime C., 2022. Performance assessment of SWAT and HEC-HMS models for runoff simulation of the Toba watershed, Ethiopia. Sustainable Water Resources Management, 8(1), 8. https://doi.org/10.1007/s40899-021-00596-8.
Fowler K., Knoben W., Peel M., Peterson T., Ryu D., Saft M., Seo K.-W. & Western A., 2020. Many commonly used rainfall-runoff models lack long, slow dynamics: Implications for runoff projections. Water Resources Research, 56(5), e2019WR025286. https://doi.org/10.1029/2019WR025286.
Ghiggi G., Humphrey V., Seneviratne S.I. & Gudmundsson L., 2021. G-RUN ENSEMBLE: A multi-forcing observation-based global runoff reanalysis. Water Resources Research, 57(5), e2020WR028787. https://doi.org/10.1029/2020WR028787.
Gichamo T., Nourani V., Gökçekuş H. & Gelete G., 2024. Ensemble of artificial intelligence and physically based models for rainfall–runoff modeling in the upper Blue Nile Basin. Hydrology Research, 55(10), 976–1000. https://doi.org/10.2166/nh.2024.189.
Gulshad K., Szydłowski M. & Mustafa A., 2024. Assessing climate change threats and urbanization impacts on surface runoff in Gdańsk (Poland): Insights from remote sensing, machine learning, and hydrological modeling. Stochastic Environmental Research and Risk Assessment, 38(12), 4825–4842. https://doi.org/10.1007/s00477-024-02834-9.
Gupta L. & Dixit J., 2022. Estimation of rainfall-induced surface runoff for the Assam region, India, using the GIS-based NRCS-CN method. Journal of Maps, 18(2), 428–440. https://doi.org/10.1080/17445647.2022.2076624.
Gupta V.K. & Sorooshian S., 1983. Uniqueness and observability of conceptual rainfall-runoff model parameters: the percolation process examined. Water Resources Research, 19(1), 269–276. https://doi.org/10.1029/WR019i001p00269.
Guzy A., Malinowska A.A., Witkowski W. & Hejmanowski R., 2021. Modelowanie przemieszczeń powierzchni terenu indukowanych drenażem warstw skalnych – przegląd literatury [Modeling of land surface movements caused by rock layer drainage – a literature review]. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, 2(318), 2–15.
Hamdan A.N.A., Almuktar S. & Scholz M., 2021. Rainfall-runoff modeling using the HEC-HMS model for the Al-Adhaim River catchment, Northern Iraq. Hydrology, 8(2), 58. https://doi.org/10.3390/hydrology8020058.
Han H., Choi C., Jung J. & Kim H.S., 2021. Deep learning with long short-term memory based sequence-to-sequence model for rainfall-runoff simulation. Water, 13(4), 437. https://doi.org/10.3390/w13040437.
He F., Wan Q., Wang Y., Wu J., Zhang X. & Feng Y., 2024. Daily runoff prediction with a seasonal decomposition-based deep GRU method. Water, 16(4), 618. https://doi.org/10.3390/w16040618.
Huang Q., Qin G., Zhang Y., Tang Q., Liu C., Xia J., Chiew F.H.S. & Post D., 2020. Using remote sensing data-based hydrological model calibrations for predicting runoff in ungauged or poorly gauged catchments. Water Resources Research, 56(8), e2020WR028205. https://doi.org/10.1029/2020WR028205.
Jehanzaib M., Ajmal M., Achite M. & Kim T.-W., 2022. Comprehensive review: Advancements in rainfall-runoff modeling for flood mitigation. Climate, 10(10), 147. https://doi.org/10.3390/cli10100147.
Kalogeropoulos K., Stathopoulos N., Psarogiannis A., Pissias E., Louka P., Petropoulos G.P. & Chalkias C., 2020. An integrated GIS-hydro modeling methodology for surface runoff exploitation via small-scale reservoirs. Water, 12(11), 3182. https://doi.org/10.3390/w12113182.
Kan G., Fu X. & Liang K., 2024. Study on rainfall-runoff simulation based on data-driven method. [in:] ICSCIS ‘24: Proceedings of the 2024 International Conference on Smart City and Information System: May 17–19, 2024|, Kuala Lumpur, Malaysia, Association for Computing Machinery, New York, 219–223. https://doi.org/10.1145/3685088.3685128.
Kapoor A., Pathiraja S., Marshall L. & Chandra R., 2023. DeepGR4J: a deep learning hybridization approach for conceptual rainfall-runoff modeling. Environmental Modeling & Software, 169, 105831. https://doi.org/10.1016/j.envsoft.2023.105831.
Kumar A., Kanga S., Taloor A. K., Singh S. K. & Đurin B., 2021. Surface runoff estimation of Sind River Basin using integrated SCS-CN and GIS techniques. HydroResearch, 4, 61–74. https://doi.org/10.1016/j.hydres.2021.08.001.
Kwon M., Kwon H.-H. & Han D., 2020. A hybrid approach combining conceptual hydrological models, support vector machines and remote sensing data for rainfall-runoff modeling. Remote Sensing, 12(11), 1801. https://doi.org/10.3390/rs12111801.
Li H., Shi C., Zhang Y., Ning T., Sun P., Liu X., Ma X., Liu W. & Collins A. L., 2020. Using the Budyko hypothesis for detecting and attributing changes in runoff to climate and vegetation change in the soft sandstone area of the middle Yellow River basin, China. Science of the Total Environment, 703, 135588. https://doi.org/10.1016/j.scitotenv.2019.135588.
Li M., Zhang Y., Wallace J. & Campbell E., 2020. Estimating annual runoff in response to forest change: A statistical method based on random forest. Journal of Hydrology, 589, 125168. https://doi.org/10.1016/j.jhydrol.2020.125168.
Liang S. & Greene R., 2020. A high-resolution global runoff estimate based on GIS and an empirical runoff coefficient. Hydrology Research, 51(6), 1238–1260. https://doi.org/10.2166/nh.2020.132.
Liang X., Lettenmaier D.P., Wood E.F. & Burges S.J., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7), 14415–14428. https://doi.org/10.1029/94JD00483.
Lindström G., Johansson B., Persson M., Gardelin M. & Bergström S., 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201(1–4), 272–288. https://doi.org/10.1016/S0022-1694(97)00041-3.
Liu L., Jiang L., Wang H., Ding X. & Xu H., 2020. Estimation of glacier mass loss and its contribution to river runoff in the source region of the Yangtze River during 2000–2018. Journal of Hydrology, 589, 125207. https://doi.org/10.1016/j.jhydrol.2020.125207.
Liu W., Li Z., Zhu J., Xu C. & Xu X., 2020. Dominant factors controlling runoff coefficients in karst watersheds. Journal of Hydrology, 590, 125486. https://doi.org/10.1016/j.jhydrol.2020.125486.
Luan J., Zhang Y., Tian J., Meresa H. & Liu D., 2020. Coal mining impacts on catchment runoff. Journal of Hydrology, 589, 125101. https://doi.org/10.1016/j.jhydrol.2020.125101.
Łucka M., Hejmanowski R. & Witkowski W.T., 2022. Analysis of the velocity changes of the Jakobshavn Glacier based on SAR imagery. Quaestiones Geographicae, 41(1), 93–105. https://doi.org/10.2478/quageo-2022-0007.
Łucka M., Hejmanowski R. & Witkowski W., 2024. Potential of employing a machine learning model for glacier motion monitoring. [in:] EGU General Assembly 2024: Vienna, Austria, 14–19 April 2024, EGU24-19059, EGU, Vienna. https://doi.org/10.5194/egusphere-egu24-19059.
Mekonnen M. & Melesse A.M., 2016. Spatial runoff estimation and mapping of potential water harvesting sites: A GIS and remote sensing perspective, Northwest Ethiopia. [in:] Melesse A.M. & Abtew W. (eds.), Landscape Dynamics, Soils and Hydrological Processes in Varied Climates, Springer Geography, Springer, Cham, 565–584. https://doi.org/10.1007/978-3-319-18787-7_26.
Miao C., Zheng H., Jiao J., Feng X., Duan Q. & Mpofu E., 2020. The changing relationship between rainfall and surface runoff on the Loess Plateau, China. Journal of Geophysical Research: Atmospheres, 125(8), e2019JD032053. https://doi.org/10.1029/2019JD032053.
Miao C., Wu Y., Fan X. & Su J., 2023. Projections of global land runoff changes and their uncertainty characteristics during the 21st century. Earth’s Future, 11(4), e2022EF003286. https://doi.org/10.1029/2022EF003286.
Mo C., Lai S., Yang Q., Huang K., Lei X., Yang L., Yan Z. & Jiang C., 2023. A comprehensive assessment of runoff dynamics in response to climate change and human activities in a typical karst watershed, southwest China. Journal of Environmental Management, 332, 117380. https://doi.org/10.1016/j.jenvman.2023.117380.
Mo C., Su Q., Lei X., Ma R., Huang Y., Feng C. & Sun G., 2024. Enhanced runoff modeling by incorporating information from the GR4J hydrological model and multiple remotely sensed precipitation datasets. Water, 16(4), 530. https://doi.org/10.3390/w16040530.
Mohammadi B., Safari M.J.S. & Vazifehkhah S., 2022. IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Scientific Reports, 12(1), 12096. https://doi.org/10.1038/s41598-022-16215-1.
Morales Y., Querales M., Rosas H., Allende-Cid H. & Salas R., 2021. A self-identification neuro-fuzzy inference framework for modeling rainfall-runoff in a Chilean watershed. Journal of Hydrology, 594, 125910. https://doi.org/10.1016/j.jhydrol.2020.125910.
Mulvaney T.J., 1851. On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment. Transactions of the Institution of Civil Engineers of Ireland (The Institution, Dublin), 4, 18–33.
Nagaveni C., Kumar K.P. & Ravibabu M.V., 2019. Evaluation of TanDEMx and SRTM DEM on watershed simulated runoff estimation. Journal of Earth System Science, 128(1), 2. https://doi.org/10.1007/s12040-018-1035-z.
Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. & King K.W., 2002. Soil and Water Assessment Tool (SWAT): Theoretical Documentation. Version 2000. TWRI Report TR-191, Texas Water Resources Institute, College Station.
Niu W., Feng Z., Zeng M., Fen B., Min Y., Cheng C. & Zhou J., 2019. Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm. Applied Soft Computing, 82, 105589. https://doi.org/10.1016/j.asoc.2019.105589.
Nourani V., Tajbakhsh A.D. & Molajou A., 2019. Data mining based on wavelet and decision tree for rainfall-runoff simulation. Hydrology Research, 50(1), 75–84. https://doi.org/10.2166/nh.2018.049.
Nourani V., Gökçekuş H. & Gichamo T., 2021. Ensemble data-driven rainfall-runoff modeling using multi-source satellite and gauge rainfall data input fusion. Earth Science Informatics, 14(4), 1787–1808. https://doi.org/10.1007/s12145-021-00615-4.
Okkan U., Ersoy Z.B., Kumanlioglu A.A. & Fistikoglu O., 2021. Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: A nested hybrid rainfall-runoff modeling. Journal of Hydrology, 598, 126433. https://doi.org/10.1016/j.jhydrol.2021.126433.
Peel M.C. & McMahon T.A., 2020. Historical development of rainfall-runoff modeling. WIREs Water, 7(5), e1471. https://doi.org/10.1002/wat2.1471.
Phien H.N. & Pradhan P.S.S., 1983. The tank model in rainfall-runoff modeling. Water SA, 9(3), 93–102.
Piwowar Ł., Łucka M. & Witkowski W., 2023. Training dataset for the machine learning approach in glacier monitoring applying SAR data. [in:] IGARSS 2023 – 2023 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Piscataway, 191–194. https://doi.org/10.1109/IGARSS52108.2023.10281675.
Ponce V.M., 1989. Engineering Hydrology: Principles and Practices. Prentice Hall, Englewood Cliffs, NJ.
Querales M., Salas R., Morales Y., Allende-Cid H. & Rosas H., 2022. A stacking neuro-fuzzy framework to forecast runoff from distributed meteorological stations. Applied Soft Computing, 118, 108535. https://doi.org/10.1016/j.asoc.2022.108535.
Rao K.N., 2020. Analysis of surface runoff potential in ungauged basin using basin parameters and SCS-CN method. Applied Water Science, 10(1), 47. https://doi.org/10.1007/s13201-019-1129-z.
Safari M.J.S., Rahimzadeh Arashloo S. & Danandeh Mehr A., 2020. Rainfall-runoff modeling through regression in the reproducing kernel Hilbert space algorithm. Journal of Hydrology, 587, 125014. https://doi.org/10.1016/j.jhydrol.2020.125014.
Shekar P.R., Mathew A., Yeswanth P.V. & Deivalakshmi S., 2024. A combined deep CNN-RNN network for rainfall-runoff modeling in Bardha Watershed, India. Artificial Intelligence in Geosciences, 5, 100073. https://doi.org/10.1016/j.aiig.2024.100073.
Singh A.K., Kumar P., Ali R., Al-Ansari N., Vishwakarma D.K., Kushwaha K.S., Panda K.C., Sagar A., Mirzania E. & Elbeltagi A., 2022. An integrated statistical-machine learning approach for runoff prediction. Sustainability, 14(13), 8209. https://doi.org/10.3390/su14138209.
Tarate S.B. & Raut S.M., 2024. Unleashing the power of AI: Revolutionizing runoff prediction beyond NRCS-CN method. Arabian Journal of Geosciences, 17(7), 219. https://doi.org/10.1007/s12517-024-12031-1.
Tripathi A., Attri L. & Tiwari R.K., 2021. Spaceborne C-band SAR remote sensing-based flood mapping and runoff estimation for 2019 flood scenario in Rupnagar, Punjab, India. Environmental Monitoring and Assessment, 193(3), 110. https://doi.org/10.1007/s10661-021-08902-9.
Verma S., Singh P.K., Mishra S. K., Singh V.P., Singh V. & Singh A., 2020. Activation soil moisture accounting (ASMA) for runoff estimation using soil conservation service curve number (SCS-CN) method. Journal of Hydrology, 589, 125114. https://doi.org/10.1016/j.jhydrol.2020.125114.
Villabona-Ortíz Á., Ortega-Toro R. & Ramirez-Yara Y., 2025. Analysis of the DBZH reflectivity of a radar and the precipitation in Bogotá using functional statistics and data mining techniques. Chemical Engineering Transactions, 117, 277–282. https://doi.org/10.3303/CET25117047.
Wagle N. & Smith L.C., 2024. Fill-spill-merge terrain analysis reveals topographical controls on Canadian river runoff. Hydrological Processes, 38(7), e15238. https://doi.org/10.1002/hyp.15238.
Wahba M., Hassan H.S., Elsadek W.M. & Elsayed T.S., 2023. Novel utilization of simulated runoff as causative parameter to predict the hazard of flash floods. Environmental Earth Sciences, 82(13), 333. https://doi.org/10.1007/s12665-023-11007-w.
Wu H., Zhang J., Bao Z., Wang G., Wang W., Yang Y. & Wang J., 2023. Runoff modeling in ungauged catchments using machine learning algorithm-based model parameters regionalization methodology. Engineering, 28, 93–104. https://doi.org/10.1016/j.eng.2021.12.014.
Wu J., Wang Z., Hu Y., Tao S. & Dong J., 2023. Runoff forecasting using convolutional neural networks and optimized bi-directional long short-term memory. Water Resources Management, 37(2), 937–953. https://doi.org/10.1007/s11269-022-03414-8.
Xu Y., Lin K., Hu C., Wang S., Wu Q., Zhang J., Xiao M. & Luo Y., 2024. Interpretable machine learning on large samples for supporting runoff estimation in ungauged basins. Journal of Hydrology, 639, 131598. https://doi.org/10.1016/j.jhydrol.2024.131598.
Yang M., Wang H., Jiang Y., Lu X., Xu Z. & Sun G., 2020. GECA proposed ensemble-KNN method for improved monthly runoff forecasting. Water Resources Management, 34(2), 849–863. https://doi.org/10.1007/s11269-019-02479-2.
Yang W.-Y., Li D., Sun T. & Ni G.-H., 2015. Saturation-excess and infiltration-excess runoff on green roofs. Ecological Engineering, 74, 327–336. https://doi.org/10.1016/j.ecoleng.2014.10.023.
Yokoo K., Ishida K., Ercan A., Tu T., Nagasato T., Kiyama M. & Amagasaki M., 2022. Capabilities of deep learning models on learning physical relationships: Case of rainfall-runoff modeling with LSTM. Science of the Total Environment, 802, 149876. https://doi.org/10.1016/j.scitotenv.2021.149876.
Yu C., Shao H., Hu D., Dai X. & Wu S., 2024. Runoff simulation modeling method integrating spatial element dynamics and neural network for remote sensing precipitation data. Journal of Hydrology, 642, 131875. https://doi.org/10.1016/j.jhydrol.2024.131875.
Zhang J., Chen X., Khan A., Zhang Y.-k., Kuang X., Liang X., Taccari M.L. & Nuttall J., 2021. Daily runoff forecasting by deep recursive neural network. Journal of Hydrology, 596, 126067. https://doi.org/10.1016/j.jhydrol.2021.126067.
Zhang Y., Chiew F.H.S., Liu C., Tang Q., Xia J., Tian J., Kong D. & Li C., 2020. Can remotely sensed actual evapotranspiration facilitate hydrological prediction in ungauged regions without runoff calibration? Water Resources Research, 56(1), e2019WR026236. https://doi.org/10.1029/2019WR026236.
Zhu S., Wei J., Zhang H., Xu Y. & Qin H., 2023. Spatiotemporal deep learning rainfall-runoff forecasting combined with remote sensing precipitation products in large scale basins. Journal of Hydrology, 616, 128727. https://doi.org/10.1016/j.jhydrol.2022.128727.
Zounemat-Kermani M., Matta E., Cominola A., Xia X., Zhang Q., Liang Q. & Hinkelmann R., 2020. Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and prospects. Journal of Hydrology, 588, 125085. https://doi.org/10.1016/j.jhydrol.2020.125085.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)
