The reconstruction of river system pollution changes with metals in shallow floodplain water reservoirs during the onset of the post-industrialisation period

Authors

DOI:

https://doi.org/10.7494/geol.2025.51.2.205

Keywords:

sediment, pollution, river, heavy metals, recovery, reservoirs

Abstract

Towards the end of the 20th century, Poland’s economy experienced a transformation in terms of its industry and increasingly stringent environmental requirements. Together, these resulted in the general improvement of the quality of the aquatic environment. The Chechło River catchment is an example of such changes, where the closure of many industrial plants (including a zinc-lead [Zn-Pb] mine), the reclamation of several hot spots and the extension of sewage treatment contributed to a general decline in sediment pollution with Zn, Pb and Cd. The aim of the investigations was to evaluate the rate of these changes in order to assess the river recovery rate to the pre-industrial pollution level. The research involved the comparison of sediment pollution in subsidence reservoirs from two different eras: the peak of pollution and the post-industrial era. We observed a decrease in sediment pollution, mostly influenced by the closure of the Zn-Pb mine in 2010, despite many sources being closed or mitigated at that time. The change in sediment pollution was very well observed in the younger reservoir of the post-industrialisation period which is an efficient trap for sediments transported since ca. 2007. Considering that the sampling took place less than 10 years after the closure of the mine, we could regard the 3–4-fold drop as a rapid change. In older reservoirs, which were active already during the period of peak river pollution but connected with the river only by narrow ditches, changes in sediment pollution were minor. Pollution changes expected in the future will be much slower because the supply of pollutants from diffuse sources has dispersed in the prevailing part of the catchment.

Downloads

Download data is not yet available.

References

Bábek O., Hilscherová K., Nehyba S., Zeman J., Famera M., Francu J., Holoubekn I., Machat J. & Klánová J., 2008. Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Journal of Soils and Sediments, 8(3), 165–176. https://doi.org/10.1007/s11368-008-0002-8.

Bird G., 2016. The influence of the scale of mining activity and mine site remediation on the contamination legacy of historical metal mining activity. Environmental Science and Pollution Research, 23(23), 23456–23466. https://doi.org/10.1007/s11356-016-7400-z.

Bogusz K.K., 2020. Historia wodociągów chrzanowskich. Miejska Biblioteka Publiczna, Chrzanów.

Bourg A.C.M. & Loch J.P.G., 1995. Mobilization of heavy metals as affected by pH and redox conditions. [in:] Salomons W. & Stigliani W.M. (eds.), Biogeodynamics of Pollutants in Soils and Sediments, Springer, Berlin, 87–102. https://doi.org/10.1007/978-3-642-79418-6_4.

Callender E., 2003. Heavy metals in the environment – historical trends. [in:] Holland H.D. & Turekian K.K. (eds.), Treatise on Geochemistry. Volume 9: Environmental Geochemistry, Pergamon, Oxford, 67–105. https://doi.org/10.1016/B0-08-043751-6/09161-1.

Ciszewski D., 1997. Source of pollution as a factor controlling distribution of heavy metals in bottom sediments of Chechło River (south Poland). Environmental Geology, 29(1–2), 50–57. https://doi.org/10.1007/s002540050103.

Ciszewski D., 2003. Heavy metals in vertical profiles of the middle Odra River overbank sediments: Evidence for pollution changes. Water, Air, and Soil Pollution, 143(1–4), 81–98. https://doi.org/10.1023/A:1022825103974.

Ciszewski D. & Łokas E., 2019. Application of 239,240Pu, 137Cs and heavy metals for dating of river sediments. Geochronometria, 46(1), 138–147. https://doi.org/10.1515/geochr-2015-0111.

Ciszewski D. & Sobucki M., 2022. River response to mining-induced subsidence. Catena, 214, 106303. https://doi.org/10.1016/j.catena.2022.106303

Citterio A. & Piegay H., 2009. Overbank sedimentation rates in former channel lakes: Characterization and control factors. Sedimentology, 56(2), 461–482. https://doi.org/10.1111/j.1365-3091.2008.00979.x.

Couillard Y., Courcelles M., Cattaneo A. & Wunsam S., 2004. A test of the integrity of metal records in sediment cores based on the documented history of metal contamination in Lac Dufault (Quebec, Canada). Journal of Paleolimnology, 32(2), 149–162. https://doi.org/10.1023/B:JOPL.0000029429.13621.68.

Dendievel A.M., Mouriera B., Dabrin A., Delile H., Coynel A., Gosseta A., Libera Y., Bergere J.F. & Bedella J.P., 2020. Metal pollution trajectories and mixture risk assessed by combining dated cores and subsurface sediments along a major European river (Rhone River, France). Environment International, 144, 106032. https://doi.org/10.1016/j.envint.2020.106032.

Dieras P.L., Constantine J.A., Hales T.C., Piégay H. & Riquier J., 2013. The role of oxbow lakes in the off-channel storage of bed material along the Ain River, France. Geomorphology, 188, 110–119. https://doi.org/10.1016/j.geomorph.2012.12.024.

Foster I.D.L. & Charlesworth S.M., 1996. Heavy metals in the hydrological cycle: Trends and explanation. Hydrological Processes, 10(2), 227–261. https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<227::AID-HYP357>3.0.CO;2-X

Gardesa T., Debreta M., Coparda Y., Pataulta E., Winiarski T., Develled A.L., Sabatierd P., Dendievel A.M., Mourier B., Marcotte S., Leroy B. & Portet-Koltalo F., 2020. Reconstruction of anthropogenic activities in legacy sediments from the Eure River, a major tributary of the Seine Estuary (France). Catena, 190, 104513. https://doi.org/10.1016/j.catena.2020.104513.

Główny Urząd Statystyczny [Central Statistical Office] (GUS), 2005. Ochrona Środowiska 2005 [Environment 2005]. Warszawa.

Gore D.B., Preston N.J. & Fryirs K.A., 2007. Post-rehabilitation environmental hazard of Cu, Zn, As and Pb at the derelict Conrad Mine, eastern Australia. Environmental Pollution, 148(2), 491–500. https://doi.org/10.1016/j.envpol.2006.12.016.

Gutiérrez M., Mickus K., Camacho L.M., 2016. Abandoned Pb-Zn mining wastes and their mobility as proxy to toxicity: A review. Science of the Total Environment, 565, 392–400. https://doi.org/10.1016/j.scitotenv.2016.04.143.

Han F.X., Banin A., Kingery W.L., Triplett G.B., Zhou L.X., Zheng S.J. & Ding W.X., 2003. New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8(1), 113–120. https://doi.org/10.1016/S1093-0191(02)00142-9.

Jaskuła J. & Sojka M., 2022. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena, 211, 105959. https://doi.org/10.1016/j.catena.2021.105959.

Klojzy-Kaczmarczyk B. & Mazurek B., 2011. Stan chemiczny wód powierzchniowych w rejonie składowiska odpadów poflotacyjnych kopalni rud Zn-Pb „Trzebionka” na etapie jego zamykania [Chemical composition of surface waters in the vicinity of flotation tailings storage site for “Trzebionka” zinc and lead ore mine in the closing down phase]. Biuletyn Państwowego Instytutu Geologicznego, 445(12/1), 301–308.

Koniarz T, Tarnawski M. & Baran A., 2023. Geochemistry indices and biotests as useful tools in the assessment of the degree of sediment contamination by metals. Geology, Geophysics and Environment, 49(1), 5–18. https://doi.org/10.7494/geol.2023.49.1.5.

Macklin M.G., Thomas C.J., Mudbhatkal A., Brewer P.A., Hudson-Edwards K.A., Lewin J., Scussolini P., Eilander D., Lechner A., Owen J., Bird G., Kemp D. & Mangalaa K.R., 2023. Impacts of metal mining on river systems: A global assessment. Science, 381(6664), 1345–1350. https://doi.org/10.1126/science.adg6704.

Meybeck M., 2013. Heavy metal contamination in rivers across the globe: An indicator of complex interactions between societies and catchments. [in:] Arheimer B. (ed.), Understanding Freshwater Quality Problems in a Changing World, IAHS Press, Wallingford, 3–16.

Moore J.N. & Langner H.W., 2012. Can a river heal itself? Natural attenuation of metal contamination in river sediment. Environmental Science and Technology, 46(5), 2616–2623. https://doi.org/10.1021/es203810j.

Nguyen H.L., Braun M., Szaloki I., Baeyens W., Van Grieken R. & Leermakers M., 2009. Tracing the metal pollution history of the Tisza River through the analysis of a sediment depth profile. Water, Air, and Soil Pollution, 200(1–4), 119–132. https://doi.org/10.1007/s11270-008-9898-2.

Niemirycz E., 1999. The pollution load from the River Odra in comparison to that in other Polish rivers in 1988–1997. Acta Hydrochimica et Hydrobiologica, 27(5), 286–291. https://doi.org/10.1002/(SICI)1521-401X(199911)27:5<286::AID-AHEH286>3.0.CO;2-N.

Pasieczna A. (ed.), Lis J., Szuwarzyński M., Dusza-Dobek A. & Witkowska A. 2008. Szczegółowa mapa geochemiczna Górnego Śląska w skali 1:25 000, arkusz Chrzanów M-34-63-D-b [Detailed Geochemical Map of Upper Silesia 1:25 000, Chrzanów map sheet M-34-63-D-b]. Państwowy Instytut Geologiczny, Warszawa.

Pastuszak M., Stålnacke P., Pawlikowski K. & Witek Z., 2012. Response of Polish rivers (Vistula, Oder) to reduced pressure from point sources and agriculture during the transition period (1988–2008). Journal of Marine Systems, 94, 157–173. https://doi.org/10.1016/j.jmarsys.2011.11.017.

Polski Komitet Normalizacyjny (PKN), 2007. Jakość wody – Metody analizy – Część 1: Spektrometria mas z plazmą indukcyjnie sprzężoną (ICP-MS) (PN-EN ISO 17294-1:2007). Warszawa.

Rzętała M., Jaguś A., Rzętała M.A., Rahmonov O., Rahmonov M. & Khak V., 2013. Variations in chemical composition of bottom deposits in anthropogenic lakes. Polish Journal of Environmental Studies, 22(6), 1799–1805.

Rzętała M.A., Jaguś A., Machowski R. & Rzętała M., 2015. The development of freshwater deltas and their environmental and economic significance. Ecology, Chemistry and Engineering Studies, 22(1), 107–123. https://doi.org/10.1515/eces-2015-0007.

Schindler M. & Kamber B.S., 2013. High-resolution lake sediment reconstruction of industrial impact in a world-class mining and smelting center, Sudbury, Ontario, Canada. Applied Geochemistry, 37, 102–116. https://doi.org/10.1016/j.apgeochem.2013.07.014.

Sedláček J., Bábek O. & Grygar T.M., 2013. Trends and evolution of contamination in a well-dated water reservoir sedimentary archive: The Brno Dam, Moravia, Czech Republic. Environmental Earth Sciences, 69(8), 2581–2593. https://doi.org/10.1007/s12665-012-2089-x.

Sedláček J., Kapustová V., Šimíček D., Bábek O. & Sekanina M., 2019. Initial stages and evolution of recently abandoned meanders revealed by multi-proxy methods in the Odra River (Czech Republic). Geomorphology, 333, 16–29. https://doi.org/10.1016/j.geomorph.2019.02.027.

Shen Z.X., Aeschliman M. & Conway N., 2021. Paleodischarge reconstruction using oxbow lake sediments complicated by shifting hydrological connectivity. Quaternary International, 604, 75–81. https://doi.org/10.1016/j.quaint.2021.07.004.

Szkokan-Emilson E.J., Watmough S.A. & Gunn J.M., 2014. Wetlands as long-term sources of metals to receiving waters in mining-impacted landscapes. Environmental Pollution, 192, 91–103. https://doi.org/10.1016/j.envpol.2014.05.009.

Taylor M.P., 1996. The variability of heavy metals in floodplain sediments: A case study from mid Wales. Catena, 28(1–2), 71–87. https://doi.org/10.1016/S0341-8162(96)00026-4.

Yabe J., Ishizuka M. & Umemura T., 2010. Current levels of heavy metal pollution in Africa. Journal of Veterinary and Medicinal Sciences, 72(10), 1257–1263. https://doi.org/10.1292/jvms.10-0058.

Zaborska A., Siedlewicz G., Szymczycha B., Dzierzbicka-Głowacka L. & Pazdro K., 2019. Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited. Marine Pollution Bulletin, 139, 238–255. https://doi.org/10.1016/j.marpolbul.2018.11.060.

Zeb M., Khan K., Younas M., Farooqi A., Cao X., Kavil Y.N., Alelyani S.S., Alkasbi M.M. & Al-Sehemi A.I.G., 2024. A review of heavy metals pollution in riverine sediment from various Asian and European countries: Distribution, sources, and environmental risk. Marine Pollution Bulletin, 206, 116775. https://doi.org/10.1016/j.marpolbul.2024.116775.

Downloads

Published

2025-07-23

Issue

Section

Articles

How to Cite

Ciszewski, D., Szarek-Gwiazda, E., & Pociecha, A. (2025). The reconstruction of river system pollution changes with metals in shallow floodplain water reservoirs during the onset of the post-industrialisation period. Geology, Geophysics and Environment, 51(2), 205–218. https://doi.org/10.7494/geol.2025.51.2.205