Hydrogeochemistry of brines on the example of selected water phenomena in the Kłodawa Salt Mine (central Poland)
DOI:
https://doi.org/10.7494/geol.2025.51.3.287Keywords:
brine hydrogeochemistry, Kłodawa salt dome, hydrochemical indices, brine isotopic composition, salt mine, hydrogeochemical processesAbstract
Chemical and isotopic studies of brines in salt mines are a key element in identifying their origins. This, in turn, is applied in determining the degree of water hazard. Studies of the chemical and isotopic composition of eight brine samples in two measurement series were carried out at the Kłodawa Inc. Salt Mine in 2022 for pH, electrolytical conductivity of water (EC), mineral alkalinity, total alkalinity, total hardness, carbonate hardness, non-carbonate hardness, HCO3−, Ca2+, Mg2+, Na+, K+, Ba2+, Li+, Sr2+, NH4+, Cl−, SO42−, NO3−, NO2−, Br−, F−, I−, CO32− ions as well as δ18O and δ2H in H2O. Analysed water phenomena were selected based on archival data which indicated their various chemical compositions. Using analyses based on hydrochemical indices and isotopic composition, it was found that the studied brines represented the isotopic composition of O and H in H2O typical of Zechstein brines, Paleo-infiltration waters, pre-Pleistocene infiltration waters and waters of mixed origin. Their salinity was mainly primary (inherent) in nature. The dominant processes affecting chemical transformations were ion exchange, precipitation and dissolution of sulphate minerals and halite, redox processes and, to a lesser extent, mixing of waters. The possible influence of inclusions on water chemistry was also found. Additionally, the analysis showed limitations in the applicability of selected hydrochemical indices.
Downloads
References
Berner Z.A., Stüben D., Leosson M.A. & Klinge H., 2002. S-and O-isotopic character of dissolved sulphate in the cover rock aquifers of a Zechstein salt dome. Applied Geochemistry, 17(12), 1515–1528. https://doi.org/10.1016/S0883-2927(02)00046-X.
Bojar A.V., Hałas S., Bojar H.P. & Trembaczowski A., 2019. Multiple isotope tracers from Permian-Triassic hydrated sulfates: Implications for fluid-mineral interaction. Bulletin de la Société Géologique de France, 190, 11. https://doi.org/10.1051/bsgf/2019010.
Boschetti T., Awadh S.M., Al-Mimar H.S., Iacumin P., Toscani L., Selmo E. & Yaseen Z.M., 2020. Chemical and isotope composition of the oilfield brines from Mishrif Formation (southern Iraq): Diagenesis and geothermometry. Marine and Petroleum Geology, 122, 104637. https://doi.org/10.1016/j.marpetgeo.2020.104637.
Burliga S., 2014. Heterogeneity of folding in Zechstein (Upper Permian) salt formations in the Kłodawa Salt Structure, central Poland. Geological Quarterly, 58(3), 565–576. https://doi.org/10.7306/gq.1153.
Czapowski G., Tomassi-Morawiec H., Handke B., Wachowiak J. & Peryt T.M., 2022. Trace elements and mineralogy of Upper Permian (Zechstein) potash deposits in Poland. Applied Sciences, 12(14), 7183. https://doi.org/10.3390/app12147183.
Das N., Horita J. & Holland H.D., 1990. Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin: Implications for Late Silurian seawater and the origin of sedimentary brines. Geochimica et Cosmochimica Acta, 54(2), 319–327. https://doi.org/10.1016/0016-7037(90)90321-B.
Davisson M.L. & Criss R.E., 1996. Na-Ca-Cl relations in basinal fluids. Geochimica et Cosmochimica Acta, 60(15), 2743–2752. https://doi.org/10.1016/0016-7037(96)00143-3.
d’Obyrn K., Motyka J. & Staszczak W., 2018. Charakter i geneza wycieku 55/750 w Kopalni Soli “Kłodawa”. Przegląd Solny, 14, 21–28.
Dowgiałło J., Kleczkowski A.S., Macioszczyk T. & Różkowski A. (red.), 2002. Słownik hydrogeologiczny. Państwowy Instytut Geologiczny, Warszawa.
Duliński M. & Brudnik K., 2017. Badania izotopowe wody dopływającej do poprzeczni Mina na poz. IV Kopalni Soli „Wieliczka” wykonane w latach 1991–2007: wyniki i ich interpretacja. Przegląd Solny, 13, 24–34.
Duliński M., Grabczak J., Garlicki A. & Zuber A., 1998. Badania izotopowe pochodzenia wód w kopalniach soli w Polsce. [in:] Galant S., Olszyńska E. & Zimnoch M. (red.), Technika jądrowa w przemyśle, medycynie, rolnictwie i ochronie środowiska: Krajowe sympozjum: Kraków 16–18 września 1998: Referaty, LodArt Akademickie Centrum Graficzno-Marketingowe, Łódź, 141–146.
Duliński M., Grabczak J. & Zuber A., 2000. Stable isotopes and hydrochemical data as a tool for identifying the origin of waters appearing in the Kłodawa Salt Mine (Poland). [in:] Różkowski A. & Rogoż M. (eds.), 7th International Mine Water Association Congress: Katowice–Ustroń, Poland 11-15 September 2000: Proceedings: Congress Theme: ‘Mine Water and the Environment’, International Mine Water Associations, Katowice, 530–536.
Edmunds W.M., 1996. Bromine geochemistry of British groundwaters. Mineralogical Magazine, 60(399), 275–284. https://doi.org/10.1180/minmag.1996.060.399.03.
García-Veigas J., Cendón D.I., Pueyo J.J. & Peryt T.M., 2011. Zechstein saline brines in Poland, evidence of overturned anoxic ocean during the Late Permian mass extinction event. Chemical Geology, 290(3–4), 189–201. https://doi.org/10.1016/j.chemgeo.2011.09.016.
Grabczak J. & Zuber A., 1983. Isotope composition of waters recharged during the Quaternary in Poland. Freiberger Forschungshefte, C388, 93–108.
Górski J. & Rasała M., 2008. Hydrogeologia wybranych wysadów solnych regionu kujawskiego: aspekty poznawcze i utylitarne. Geologos (Instytut Geologii; Uniwersytet im. Adama Mickiewicza; Poznań), 13, Bugucki Wydawnictwo Naukowe, Poznań.
Horita J., 1989. Analytical aspects of stable isotopes in brines. Chemical Geology: Isotope Geoscience Section, 79(2), 107–112. https://doi.org/10.1016/0168-9622(89)90013-4.
Horita J., Weinberg A., Das N. & Holland H.D., 1996. Brine inclusions in halite and the origin of the Middle Devonian Prairie evaporites of western Canada. Journal of Sedimentary Research, 66(5), 956–964. https://doi.org/10.1306/d4268450-2b26-11d7-8648000102c1865d.
Kloppmann W., Négrel P., Casanova J., Klinge H., Schelkes K. & Guerrot C., 2001. Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica et Cosmochimica Acta, 65(22), 4087–4101. https://doi.org/10.1016/S0016-7037(01)00640-8.
Knauth L.P. & Kumar M.B., 1983. Isotopic character and origin of brine leaks in the Avery Island salt mine, south Louisiana, USA. Journal of Hydrology, 66(1–4), 343–350. https://doi.org/10.1016/0022-1694(83)90195-6.
Kovalevich V.M., Peryt T.M. & Petrichenko O.I., 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. The Journal of Geology, 106(6), 695–712. https://doi.org/10.1086/516054.
Macioszczyk A., 1987. Hydrogeochemia. Wydawnictwa Geologiczne, Warszawa.
Matray J.M. & Fontes Ch., 1990. Origin of the oil-field brines in the Paris basin. Geology, 18(6), 501–504. https://doi.org/10.1130/0091-7613(1990)018<0501:OOTOFB>2.3.CO;2.
Mazurek S., Burliga S., Wiśniewski A., Staszczak W., Misiek G., Kurdek D. & Bartłomiejczak G., 2016. Dodatek nr 2 do Dokumentacji geologicznej złoża soli kamiennej Kłodawa 1 [3420/2017]. Narodowe Archiwum Geologiczne Państwowego Instytutu Geologicznego, Warszawa.
Mertineit M. & Schramm M., 2019. Lithium occurrences in brines from two German salt deposits (Upper Permian) and first results of leaching experiments. Minerals, 9(12), 766. https://doi.org/10.3390/min9120766.
Moldovanyi E.P., Walter L.M. & Land L.S., 1993. Strontium, boron, oxygen, and hydrogen isotope geochemistry of brines from basal strata of the Gulf Coast sedimentary basin, USA. Geochimica et Cosmochimica Acta, 57(9), 2083–2099. https://doi.org/10.1016/0016-7037(93)90095-E.
Poborska-Młynarska K., 2013. Wysad solny i kopalnia soli w Kłodawie. Nauka dla Ciekawych, 5, Wydawnictwa AGH, Kraków.
Schramm M., Hammer J., Kühnlenz T. & Mingerzahn G., 2009. Geochemical characterization and genetic interpretation of solutions in the Gorleben salt dome. Przegląd Geologiczny, 57(9), 786.
Spencer R.J., 1987. Origin of Ca-Cl brines in Devonian formations, western Canada sedimentary basin. Applied Geochemistry, 2(4), 373–384. https://doi.org/10.1016/0883-2927(87)90022-9.
Staszczak W. & Krokos K., 2017. Charakterystyka zagrożenia wodnego w Kopalni Soli “Kłodawa” S.A. na przykładzie wybranych zjawisk. Przegląd Solny, 13, 115–121.
Taj J.R. & Aref A.M., 2015. Hydrochemistry, evolution, and origin of brines in supratidal saline pans, south Jeddah, Red Sea coast, Saudi Arabia. Arabian Journal of Geosciences, 8(10), 8835–8851. https://doi.org/10.1007/s12517-015-1799-2.
Trzeciakowska M. & Owczarczak B., 2002. Objaśnienia do Mapy hydrogeologicznej Polski w skali 1:50 000. Arkusz Kłodawa (515). Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
Vinograd N. & Porowski A., 2020. Application of isotopic and geochemical studies to explain the origin and formation of mineral waters of Staraya Russa Spa, NW Russia. Environmental Earth Sciences, 79(8), 183. https://doi.org/10.1007/s12665-020-08923-6.
Wachowiak J., 2010. Poziomy mineralne w solach cechsztyńskich wysadu solnego Kłodawa jako narzędzie korelacji litostratygraficznej. Geologia: Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 36(3), 367–393.
Winid B., 2003. Wycieki solanek związane ze złożami soli kamiennej i znaczenie analizy ich parametrów w obserwacji warunków hydrogeologicznych na przykładzie Kopalni Soli Wieliczka. Wydział WNiG AGH Kraków [PhD thesis, unpublished].
Winid B. & Witczak S., 2004. Bromide concentration in mine waters from the Wieliczka Salt Mine as an indicator of their origin and migration of flow paths in the salt deposit. Annales Societatis Geologorum Poloniae, 74, 277–283.
Zubrzycki A., 2003. Genetyczna interpretacja zależności jonowych Na-Ca-Cl w wodach formacyjnych dolomitu głównego cechsztynu na Niżu Polskim [Genetic interpretation of relations in Zechstein Main Dolomite formation waters in the area of Polish Lowland]. Wiertnictwo, Nafta, Gaz, 20/1, 291–296.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)
