Decomposition of displacement vectors from InSAR images of mining areas – a case study
DOI:
https://doi.org/10.7494/geol.2025.51.2.173Keywords:
InSAR, mining tremors; mining deformationsAbstract
Mining activities are a major anthropogenic driver of ground surface deformation, often resulting in complex subsidence phenomena that are difficult to characterize using conventional geodetic methods. Interferometric synthetic aperture radar (InSAR) provides a powerful means of detecting displacements over large areas, but decomposing its line-of-sight (LOS) measurements into full 3D displacement vectors remains a challenge, especially when limited to data from two satellite tracks. This paper presents an iterative decomposition algorithm that supplements the classical two-LOS system with an empirical relationship between horizontal displacement components and the slope of the subsidence trough, derived from established mining deformation theories. The algorithm is validated through both a theoretical “blind” test case and three real-life examples of mining-induced seismic deformation in the Legnica-Głogów Copper District (LGCD), Poland. The results show that the proposed method significantly improves the accuracy of displacement vector estimation compared to classical decomposition techniques. This approach not only enhances our understanding of mining-induced ground movements but also offers practical benefits for ground surface deformation monitoring and hazard assessment in subsidenceprone regions.
Downloads
References
Avershin S.G., 1947. Sdvizheniye gornykh porod pri podzemnykh razrabotkakh [Displacement of rock masses during underground mining]. Ugletekhizdat, Moskva.
Blachowski J., Milczarek W. & Stefaniak P., 2014. Deformation information system for facilitating studies of mining ground deformations – development and applications. Natural Hazards and Earth System Sciences, 14(7), 1677–1689. https://doi.org/10.5194/nhess-14-1677-2014.
Blachowski J., Jiránková E., Lazecký M., Kadlečík P. & Milczarek W., 2018. Application of satellite radar interferometry (PSInSAR) in analysis of secondary surface deformations in mining areas: Case studies from Czech Republic and Poland. Acta Geodynamica et Geomaterialia, 15(2), 173–185. https://doi.org/10.13168/AGG.2018.0013.
Brouwer W.S. & Hanssen R.F., 2024. Estimating three-dimensional displacements with InSAR: The strapdown approach. Journal of Geodesy, 98(12), 110. https://doi.org/10.1007/s00190-024-01918-2.
Camós C. & Molins C., 2015. 3D analytical prediction of building damage due to ground subsidence produced by tunneling. Tunnelling and Underground Space Technology, 50, 424–437. https://doi.org/10.1016/j.tust.2015.08.012.
Castellazzi P., Arroyo-Domínguez N., Martel R., Calderhead A.I., Normand J.C., Gárfias J. & Rivera A., 2016. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. International Journal of Applied Earth Observation and Geoinformation, 47, 102–111. https://doi.org/10.1016/j.jag.2015.12.002.
Chang Z., Yu W., Wang W., Zhang J., Liu X. & Zhu J., 2017. An approach for accurately retrieving the vertical deformation component from two-track InSAR measurements. International Journal of Remote Sensing, 38(6), 1702–1719. https://doi.org/10.1080/01431161.2017.1285448.
Chen B.Q., Jiang D., Zhang J., Gao J. & Fan X.T., 2018. Monitoring of 3D large surface deformation in coal mines through the integration of synthetic aperture radar pixel offset tracking and probability integration function model. Instrumentation, Mesure, Métrologie, 17(3), 507–519. https://doi.org/10.3166/I2M.17.507-519.
Chen C.W. & Zebker H.A., 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709–1719. https://doi.org/10.1109/TGRS.2002.802453.
Chugh Y.P., Hao Q.-W. & Zhu F.-S., 1991. State-of-the-art in mine subsidence prediction. [in:] Singh B. & Saxena N.C. (eds.), Land Subsidence: Proceedings of the International Symposium, Dhanbad, India, 11–15 December 1989, A.A. Balkema, Rotterdam, 51–66.
Cigna F. & Tapete D., 2022. Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Science of the Total Environment, 811, 152211. https://doi.org/10.1016/j.scitotenv.2021.152211.
Dittrich J., Hölbling D., Tiede D. & Sæmundsson Þ., 2022. Inferring 2D local surface-deformation velocities based on PSI analysis of Sentinel-1 data: A case study of Öræfajökull, Iceland. Remote Sensing, 14(13), 3166. https://doi.org/10.3390/rs14133166.
Dong L., Wang C., Tang Y., Tang F., Zhang H., Wang J. & Duan W., 2021. Time series InSAR three-dimensional displacement inversion model of coal mining areas based on symmetrical features of mining subsidence. Remote Sensing, 13(11), 2143. https://doi.org/10.3390/rs13112143.
Galloway D. & Burbey T., 2011. Review: regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486. https://doi.org/10.1007/s10040-011-0775-5.
Ge L., Chang H.-C. & Rizos C., 2007. Mine subsidence monitoring using multi-source satellite SAR images. Photogrammetric Engineering & Remote Sensing, 73(3), 259–266. https://doi.org/10.14358/PERS.73.3.259.
Hejmanowski R. & Kwinta A., 1997. Implementation of GPS satelitary technique for monitoring of point displacements on mining areas. [in:] Second World Mining Environment Congress WOMEC ‘97: 13–16 May 1997, Katowice, Poland: Proceedings. Vol. 1, CMI, Katowice, 351–369.
Hejmanowski R. & Kwinta A., 2001. Measurement of horizontal displacements in European coalfields. [in:] 10th International Symposium on Deformation Measurements: Orange, California, USA 19–22 March 2001: [abstracts], 31–39.
Hejmanowski R. & Kwinta A., 2009. Determining the coefficient of horizontal displacements with the use of orthogonal polynomials. Archives of Mining Sciences, 54(3), 441–454.
Hejmanowski R. & Kwinta A., 2010. Modelowanie deformacji ciągłych powierzchni terenu w warunkach zmiennego zalegania złoża. Gospodarka Surowcami Mineralnymi = Mineral Resources Management, 26(3), 143–153.
Karimzadeh S., Ghasemi M., Matsuoka M., Yagi K. & Zulfikar A.C., 2022. A deep learning model for road damage detection after an earthquake based on synthetic aperture radar (SAR) and field datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5753–5765. https://doi.org/10.1109/JSTARS.2022.3189875.
Knothe S., 1953. Równanie profilu ostatecznie wykształconej niecki osiadania. Archiwum Górnictwa i Hutnictwa, 1(1), 22–38.
Kopeć A., 2021. Metodyka przetwarzania danych interferometrycznych w aspekcie oddziaływania podziemnej eksploatacji górniczej na powierzchnię terenu. Politechnika Wrocławska. Wrocław [PhD thesis].
Kratzsch H., 1983. Mining Subsidence Engineering. Springer, Berlin, Heidelberg, New York.
Kwinta A., 2003. Weryfikacja modeli niestacjonarnego pola poziomych przemieszczeń górniczych. Akademia Górniczo-Hutnicza, Kraków [PhD thesis].
Litwiniszyn J., 1974. A remark concerning the so called “point of the attraction centre” and its connection with the formation of the subsidence trough. Archiwum Górnictwa, 19(3), 231–236.
Loupasakis C., Angelitsa V., Rozos D. & Spanou N., 2014. Mining geohazards – Land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece. Natural Hazards, 70(1), 675–691. https://doi.org/10.1007/s11069-013-0837-1.
Malinowska A., Witkowski W., Guzy A. & Hejmanowski R., 2018. Mapping ground movements caused by mining-induced earthquakes applying satellite radar interferometry. Engineering Geology, 246, 402–411. https://doi.org/10.1016/j.enggeo.2018.10.013.
Milczarek W., Kopeć A., Głabicki D. & Bugajska N., 2021. Induced seismic events – distribution of ground surface displacements based on InSAR methods and Mogi and Yang models. Remote Sensing, 13(8), 1451. https://doi.org/10.3390/rs13081451.
Niemczyk O., 1935. Zur Frage des Grenz- und Bruchwinkels bei Bodensenkungen. Mitteilungen aus dem Markscheidewesen, 46, 37–48.
Owczarz K. & Blachowski J., 2020. Application of DInSAR and spatial statistics methods in analysis of surface displacements caused by induced tremors. Applied Sciences (Switzerland), 10(21), 7660. https://doi.org/10.3390/app10217660.
Pasquali P., Cantone A., Riccardi P., De Filippi M., Ogushi F., Tamura M. & Gagliano S., 2015. Monitoring land subsidence in the Tokyo region with SAR interferometric stacking techniques. [in:] Margottini C., Alcañiz J.M. & López Jiménez J.A. (eds.), Engineering Geology for Society and Territory – Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation, Springer, Berlin, Heidelberg, 995–999. https://doi.org/10.1007/978-3-319-09048-1_191.
Peng S.S., 1986. Coal Mine Ground Control. John Wiley & Sons, New York.
Perski Z., 1998. Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal mining region, Poland. International Archives of Photogrammetry and Remote Sensing, 32(7), 555–558.
Przyłucka M., Perski Z. & Kowalski Z., 2024. Long-term subsidence over the Upper Silesia Coal Basin identified on differential LIDAR (2012–2021) and InSAR (2015–2020) data. Geological Quarterly, 68(2), 17. https://doi.org/10.7306/gq.1745.
Sandwell D., Mellors R., Tong X., Wei M. & Wessel P., 2011. Open radar interferometry software for mapping surface deformation. Eos, Transactions American Geophysical Union, 92(28), 234. https://doi.org/10.1029/2011EO280002.
Shen B., King A. & Guo H., 2008. Displacement, stress and seismicity in roadway roofs during mining-induced failure. International Journal of Rock Mechanics and Mining Sciences, 45(5), 672–688. https://doi.org/10.1016/j.ijrmms.2007.08.011.
Tajduś K., 2015. Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation. Journal of Rock Mechanics and Geotechnical Engineering, 7(4), 395–403. https://doi.org/10.1016/j.jrmge.2015.03.012.
Tang F., Dong L., Wang Z. & Huang J., 2019. A 3-D inversion model for InSAR detected displacements based on ground subsidence symmetry induced by horizontal coal mining. Journal of China Coal Society, 44(1), 210–220. https://doi.org/10.13225/j.cnki.jccs.2018.0698.
Wang Y.Q., Wang Z.F. & Cheng W.C., 2019. A review on land subsidence caused by groundwater withdrawal in Xi’an, China. Bulletin of Engineering Geology and the Environment, 78(4), 2851–2863. https://doi.org/10.1007/s10064-018-1278-6.
Wang Y., Yang Z., Li Z., Zhu J. & Wu L., 2020. Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method. Journal of Geodesy, 94(5), 47. https://doi.org/10.1007/s00190-020-01374-8.
Witkowski W.T., Mrocheń D., Sopata P. & Stoch T., 2021. Integration of the leveling observations and PSInSAR results for monitoring deformations caused by underground mining. [in:] 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 6614–6617. https://doi.org/10.1109/IGARSS47720.2021.9553988.
Wright T.J., Parsons B.E. & Lu Z., 2004. Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 31(1), L01607. https://doi.org/10.1029/2003GL018827.
Xie Y., Bagan H., Tan L., Te T., Damdinsuren A. & Wang Q., 2024. Time-series analysis of mining-induced subsidence in the arid region of Mongolia based on SBAS-InSAR. Remote Sensing, 16(12), 2166. https://doi.org/10.3390/rs16122166.
Yan S., Liu G., Deng K., Wang Y., Zhang S. & Zhao F., 2016. Large deformation monitoring over a coal mining region using pixel-tracking method with high-resolution Radarsat-2 imagery. Remote Sensing Letters, 7(3), 219–228. https://doi.org/10.1080/2150704X.2015.1126683.
Yang Z., Li Z., Zhu J., Wang Y. & Wu L., 2020. Use of SAR/InSAR in mining deformation monitoring, parameter inversion, and forward predictions: A review. IEEE Geoscience and Remote Sensing Magazine, 8(1), 71–90. https://doi.org/10.1109/MGRS.2019.2954824.
Yang S., Zhang D., Wang M. & Li J., 2023. Ground and tunnel deformation induced by excavation in pipe-roof pre-construction tunnel: A case study. Tunnelling and Underground Space Technology, 131, 104832. https://doi.org/10.1016/j.tust.2022.104832.
Yu C., Li Z., Penna N.T. & Crippa P., 2018. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202–9222. https://doi.org/10.1029/2017JB015305.
Zhao H., Ma F. & Zhang Y., 2013. Monitoring and analysis of the mining-induced ground movement in the Longshou Mine, China. Rock Mechanics and Rock Engineering, 46(1), 207–211. https://doi.org/10.1007/s00603-012-0232-3.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)
