Local tectonic stress regime in the Upper Silesian Coal Basin using primary geodetic data

Authors

DOI:

https://doi.org/10.7494/geol.2025.51.2.149

Keywords:

Global Navigation Satellite System (GNSS), tectonic regime, triangulation method, geodetic strain, strain parameters

Abstract

Many papers have been devoted to the problematic tectonic stress regime of the Upper Silesian Coal Basin (USCB), particularly relating to the interrelation between the tremors triggered by mining activity and the natural seismicity in the rock mass. This problem is analysed here on the basis of geodetic data in light of the tectonic setting. The author determined the horizontal strain regime in the USCB area with the application of triangular arrays that are formed by a network of GPS/GNSS stations. The primary geodetic data used in this research are the coordinates recorded in time by the stations. They enabled the calculation of the easting and northing components of displacement velocity vector and their errors. 16 permanently installed GPS/GNSS stations are located into the study area and this set led to the construction of 23 different triangles, while the centroid of each triangle was extracted. For each centroid, the deformation parameters were determined: maximal horizontal extension, azimuth of maximal horizontal extension, minimal horizontal extension, maximal shear strain, and area strain. These results were applied to estimate the spatial distributions of the parameters. The distributions reveal that the central part of the study area (the Upper Silesian Trough) is under compression, and is surrounded by extension zones. In general, the distributions of strain estimates correspond to the tectonic pattern of the area. These findings provide a different perspective on former studies on tectonic stress by geological surveys and tectonic influence on seismicity in the USCB area. They confirm earlier assumptions about the occurrence of tectonic stress in the studied area. The determined deformation parameters and their spatial distribution provide an explanation for the occurrence of high-energy tremors in the USCB area.

Downloads

Download data is not yet available.

References

Aleksandrowicz S.W., 1964. Przejawy tektoniki mioceńskiej w Zagłębiu Górnośląskim [Miocene tectonics in the Upper Silesian Basin]. Acta Geologica Polonica, 14(2), 175–228.

Allmendinger R.W., Reilinger R. & Loveless J.P., 2007. Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics, 26(2), TC3013. https://doi.org/10.1029/2006TC002030.

Allmendinger R.W., Loveless J.P., Pritchard M.E. & Meade B., 2009. From decades to epochs: Spanning the gap between geodesy and structural geology of active mountain belts. Journal of Structural Geology, 31(11), 1409–1422. https://doi.org/10.1016/j.jsg.2009.08.008.

Allmendinger R.W., Cardozo N. & Fisher D., 2012. Structural Geology Algorithms: Vectors and Tensors. Cambridge University Press, Cambridge.

Araszkiewicz A., Figurski M. & Jarosiński M., 2016. Erroneous GNSS strain rate patterns and their application to investigate the tectonic credibility of GNSS velocities. Acta Geophysica, 64(5), 1412–1429. https://doi.org/10.1515/acgeo-2016-0057.

Argus D.F., Heflin M.B., Peltzer G., Crampe F. & Webb F.H., 2005. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. Journal of Geophysical Research, 110(B4), B04401, 1–26. https://doi.org/10.1029/2003JB002934.

Avouac J.P. & Tapponnier P., 1993. Kinematic model of active deformation in central Asia. Geophysical Research Letters, 20(10), 895–898. https://doi.org/10.1029/93GL0012.

Bawden G.W., Thatcher W., Stein R.S., Hudnut K.W. & Peltzer G., 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412, 812–815. https://doi.org/10.1038/35090558.

Blewitt G., Lavallée D., Clarke P. & Nurutdinov K., 2001. A new global mode of earth deformation: Seasonal cycle detected. Science, 294(5550), 2342–2345. https://doi.org/10.1126/science.1065328.

Blewitt G., Hammond W.C. & Kreemer C., 2018. Harnessing the GPS data explosion for interdisciplinary science. Eos, 99, 18–22. https://doi.org/10.1029/2018EO104623.

Bogusz J., Kłos A., Figurski M., Jarosiński M. & Kontny B., 2013. Investigation of the reliability of local strain analysis by means of the triangle modelling. Acta Geodynamica et Geomaterialia, 10(3), 93–305. https://doi.org/10.13168/AGG.2013.0029.

Bosy J., Graszka W. & Leończyk M., 2007. ASG-EUPOS – a multifunctional precise satellite positioning system in Poland. TransNav, International Journal on Marine Navigation and Safety of Sea Transportation, 1(4), 371–374.

Botor D., Dunkl I., Anczkiewicz A. & Mazur S., 2017. Post-Variscan thermal history of the Moravo-Silesian lower Carboniferous Culm Basin (NE Czech Republic – SW Poland). Tectonophysics, 712–713, 643–662. https://doi.org/10.1016/j.tecto.2017.06.035.

Buła Z. & Kotas A. (red.), 1994. Atlas geologiczny Górnośląskiego Zagłębia Węglowego: 1:100 000. Cz. 3, Mapy geologiczno-strukturalne [Geological atlas of the Upper Silesian Coal Basin. P. 3, Structural geological maps]. Państwowy Instytut Geologiczny, Warszawa.

Buła Z., Żaba J. & Habryn R., 2008. Regionalizacja tektoniczna Polski – Polska południowa (blok górnośląski i blok małopolski) [Tectonic subdivision of Poland: Southern Poland (Upper Silesian Block and Małopolska Block)]. Przegląd Geologiczny, 56(10), 912–920. https://geojournals.pgi.gov.pl/pg/article/view/30756/23445.

Cronin V., Olds S., Pratt-Sitaula B., Resor P., West N., Hammond W.C., Kreemer C., 2012. Infinitesimal strain analysis using GPS data: Module for structural geology or geophysics course. UNAVCO, Geodetic Education Resources. https://serc.carleton.edu/getsi/teaching_materials/gps_strain/unit4.html [access: 1.09.2024].

Doktorowicz-Hrebnicki S., 1963. Zależność między ruchami dna basenu sedymentacyjnego karbonu górnego a późniejszą jego tektoniką [Interdependence of the movements of the floor of the Upper Carboniferous sedimentation basin and its later tectonics]. Prace Instytutu Geologicznego, 30(4), 263–276.

Dopita M. & Kumpera O., 1993. Geology of the Ostrava-Karviná coalfield, Upper Silesian Basin, Czech Republic, and its influence on mining. International Journal of Coal Geology, 23(1–4), 291–321. https://doi.org/10.1016/0166-5162(93)90053-D.

Dubiński J., Stec K. & Bukowska M., 2019. Geomechanical and tectonophysical conditions of mining-induced seismicity in the Upper Silesian Coal Basin in Poland: A case study. Archives of Mining Sciences, 64(1), 163–180. https://doi.org/10.24425/ams.2019.126278.

Dyjor S., Dendewicz A., Grodzicki A., Sadowska A., 1978. Neogeńska i staroplejstońska sedymentacja w obrębie stref zapadliskowych rowów Paczkowa i Kędzierzyna [The Neogene and old-Pleistocene sedimentation in the Paczków and Kędzierzyn graben zones]. Geologia Sudetica, 13(1), 7–139. https://geojournals.pgi.gov.pl/gs/article/view/25392.

JCGM, 2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement = Évaluation des données de mesure – Guide pour l’expression de l’incertitude de mesure (JCGM 100:2008). Joint Committee for Guides in Metrology, Sèvres. https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf [access: 1.09.2024].

Gibowicz S.J., 1990. Seismicity induced by mining. Advances in Geophysics, 32, 1–74. https://doi.org/10.1016/S0065-2687(08)60426-4.

Goszcz A., 1985. Kompakcja tektoniczna jako przyczyna naturalnej skłonności skał do wstrząsów górniczych i tąpań. Przegląd Górniczy, 7–8, 239–244.

Goszcz A., 1986. Tektonofizyczne przyczyny występowania wstrząsów górniczych [Tectonophysical origin of mining tremors]. [in:] Wybrane zagadnienia geofizycznych badań w kopalniach: Jastarnia, 6–10 V 1985 = Some geophysical problems in mine, Publications of the Institute of Geophysics Polish Academy of Sciences, M-8(191), Państwowe Wydawnictwo, Warszawa – Łódź, 61–75.

Goszcz A., 1999. Elementy mechaniki skał oraz tąpania w polskich kopalniach węgla i miedzi. Biblioteka Szkoły Eksploatacji Podziemnej. Seria z Lampką Górniczą, nr 2, Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków.

Grygar R. & Wacławik P., 2011. Structural-tectonic conditions of Karviná Subbasin with regard to its position in the apical zone of Variscan accretion wedge. Acta Montanistica Slovaca, 16(2), 159–175.

Heki K., 2001. Seasonal modulation of interseismic strain buildup in northeastern Japan driven by snow loads. Science, 293(5527), 89–92. https://doi.org/10.1126/science.1061056.

Herbich E., 1981. Analiza tektoniczna sieci uskokowej Górnośląskiego Zagłębia Węglowego [A tectonic analysis of the fault network of the Upper Silesia Coal Basin]. Annales Societatis Geologorum Poloniae, 51(3–4), 383–434. http://www.asgp.pl/sites/default/files/volumes/51_3-4_383_434.pdf [access: 1.09.2024].

Idziak A.F., Teper L. & Zuberek W.M., 1999. Sejsmiczność a tektonika Górnośląskiego Zagłębia Węglowego [Seismic activity and tectonics of the Upper Silesian Coal Basin]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 1793, Wydawnictwo Uniwersytetu Śląskiego, Katowice. https://core.ac.uk/download/pdf/270093587.pdf [access: 1.09.2024].

Jarosiński M., 1998. Contemporary stress field distortion in the Polish part of the Western Outer Carpathians and their basement. Tectonophysics, 297(1–4), 91–119. https://doi.org/10.1016/S0040-1951(98)00165-6.

Jarosiński M., 2005. Ongoing tectonic reactivation of the Outer Carpathians and its impact on the foreland: Results of borehole breakout measurements in Poland. Tectonophysics, 410(1–4), 189–216. https://doi.org/10.1016/j.tecto.2004.12.040.

Jarosiński M., 2006. Recent tectonic stress field investigations in Poland: A state of the art. Geological Quarterly, 50(3), 303–321.

Jarosinski M., Beekman F., Matenco L. & Cloetingh S., 2011. Mechanics of basin inversion: Finite element modelling of the Pannonian Basin System. Tectonophysics, 502(1–2), 121–145. https://doi.org/10.1016/j.tecto.2009.09.015.

Jura D., 1995. The young-Alpine morphotectonics of the Silesian Carpathian Foredeep and the recent geodynamics of the Upper Silesian Coal Basin. Technika Poszukiwań Geologicznych: Geosynoptyka i Geotermia, 38(1), 9–11.

Jura D., 1999. Young Alpine Klonica Fault scarps of the metacarpathian in the Silesian Upland. Technika Poszukiwań Geologicznych: Geosynoptyka i Geotermia, 38(1), 52–56.

Jura D., 2001. Morfotektonika i ewolucja różnowiekowej niezgodności w stropie utworów karbonu Górnośląskiego Zagłębia Węglowego [Morphotectonics and evolution of discordances of different age present in the top surface of the Carboniferous of the Upper Silesia Coal Basin]. Prace Naukowe Uniwersytetu Śląskiego, 1952, Wydawnictwo Uniwersytetu Śląskiego, Katowice.

Jureczka J. & Kotas A., 1995. Coal deposits – Upper Silesian Coal Basin. [in:] Zdanowski A. & Żakowa H. (eds.), The Carboniferous System in Poland, Prace Państwowego Instytutu Geologicznego, 148, Państwowy Instytut Geologiczny, Warszawa, 164–173.

Kotas A., 1985. Uwagi o ewolucji strukturalnej Górnośląskiego Zagłębia Węglowego. [in:] Trzepierczyński J. (red.), Tektonika Górnośląskiego Zagłębia Węglowego: Sosnowiec 1985, maj 31 – czerwiec 1, Uniwersytet Śląski, Sosnowiec, 17–46.

Kotas A., 1995. Upper Silesian Coal Basin: Lithostratigraphy, sedimentology, and paleogeographic development. [in:] Zdanowski A. & Żakowa H. (eds.), The Carboniferous System in Poland, Prace Państwowego Instytutu Geologicznego, 148, Państwowy Instytut Geologiczny, Warszawa, 124–135.

Kotlicka G.N., 1981. Neotektonika doliny Górnej Odry [The neotectonics of the valley of the Upper Odra]. Z Badań Czwartorzędu w Polsce, 23, Biuletyn Instytutu Geologicznego, 321, 165–175.

Krawczyk A. & Grzybek R., 2018. An evaluation of processing InSAR Sentinel-1A/B data for correlation of mining subsidence with mining induced tremors in the Upper Silesian Coal Basin (Poland). E3S Web Conference, 26, 00003. https://doi.org/10.1051/e3sconf/20182600003.

Kroner U., Mansy J.-L., Mazur S., Aleksandrowski P., Hann H.P., Huckriede H., Lacquement F., Lamarche J., Ledru P., Pharaoh T.C., Zedler H., Zeh A. & Zulauf G., 2008. Variscan tectonics. [in:] McCann T. (ed.), The geology of Central Europe. Volume 1: Precambrian and Palaeozoic, Geological Society, London, 599–664. https://doi.org/10.1144/CEV1P.11.

Kusiak M., Kędzior A., Paszkowski M., Suzuki K., Gonzalez-Alvarez I., Wajsprych B. & Doktor M., 2006. Provenance implications of Th-U-Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland. Lithos, 88(1–4), 56–71. https://doi.org/10.1016/j.lithos.2005.08.004.

Lazos I., Stergiou C.L., Chatzipetros A., Pikridas C., Bitharis S. & Melfos V., 2018. Active tectonics (extensional regime and rotations) and Tertiary mineralization occurrences within Central Macedonia, Greece. [in:] Koukousioura O. & Chatzipetros A. (eds.), The 9th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 25 – 27 June 2018, Possidi, Greece, School of Geology of the Aristotle University of Thessaloniki, Thessaloniki, 145–148.

Lazos I., Pikridas C., Chatzipetros A. & Pavlides S., 2020. Determination of local active tectonics regime in central and northern Greece, using primary geodetic data. Applied Geomatics, 13(1), 3–17. https://doi.org/10.1007/s12518-020-00310-x.

Lewandowski J., 1995. Neotectonic structures in the Racibórz-Oświęcim Basin, Upper Silesia, Southern Poland. Folia Quaternaria, 66, 99–104.

Lewandowski J., 2007. Neotectonic structures of the Upper Silesian region, Southern Poland. Studia Quaternaria, 24, 21–28.

Mendecki M., Szczygieł J., Lizurek G. & Teper L., 2020. Mining-triggered seismicity governed by a fold hinge zone: The Upper Silesian Coal Basin, Poland. Engineering Geology, 274, 105728. https://doi.org/10.1016/j.enggeo.2020.105728.

Michel V. & Person T., 2003. From geodetic monitoring to deformation tensors and their reliability. [in:] Stiros S.C. & Pytharouli S. (eds.), Proceedings 11th International FIG Symposium on Deformation Measurements: Santorini (Thera) Island, Greece, 25–28 May 2003, Patras University, Patras, 463–469.

Overacker J., Hammond W.C., Blewitt G. & Kreemer C., 2022. Vertical land motion of the High Plains aquifer region of the United States: Effect of aquifer confinement style, climate variability, and anthropogenic activity. Water Resources Research, 58, e2021WR031635. https://doi.org/10.1029/2021WR031635.

Patyńska R. & Stec K., 2017. Regional rockburst indicator for structural units of Upper Silesia Coal Basin. Studia Geotechnica et Mechanica, 39(3), 27–37. https://doi.org/10.1515/sgem-2017-0027.

Pospíšil L., Otava J. & Hudečková E., 2019. Utilization of archive geophysical data for geodynamical studies in the Sudetes: Example of Bělá fault zone (The Nízký Jeseník Mts). Acta Geodynamica et Geomaterialia, 16(195), 281–291. https://doi.org/10.13168/AGG.2019.0024.

Ptáček J., Grygar R., Koníček P. & Waclawik P., 2012. The impact of Outer Western Carpathian nappe tectonics on the recent stress-strain state in the Upper Silesian Coal Basin (Moravosilesian Zone, Bohemian Massif). Geologica Carpathica, 63(1), 3–11. https://doi.org/10.2478/v10096-012-0002-x.

Roštínský P., Pospíšil L., Švábenský O., Kašing M. & Nováková E., 2020. Risk faults in stable crust of the eastern Bohemian Massif identified by integrating GNSS, levelling, geological, geomorphological and geophysical data. Tectonophysics, 785, 228427. https://doi.org/10.1016/j.tecto.2020.228427.

Roštínský P., Pospíšil L., Švábenský O., Melnyk A. & Nováková E., 2024. Recent reactivation of Variscan tectonic zones: A case of Rodl–Kaplice–Blanice fault system (Bohemian Massif, Austria/Czech Republic). Surveys in Geophysics, 45(3), 609–661. https://doi.org/10.1007/s10712-023-09811-x.

Schenková Z., Kottnauer P., Schenk V., Cajthamlová-Grácová M., Mantlík F. & Kujal R., 2009. Investigation of the recent crustal movements of the eastern part of the Bohemian Massif using GPS technology. Acta Research Reports, 18, 17–25.

Schmidt D.A. & Bürgmann R., 2003. Time-dependent land uplift and subsidence in the Santa Clara Valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research, 108(B9), 2416. https://doi.org/10.1029/2002JB002267.

Segall P. & Davis J.L., 1997. GPS applications for geodynamics and earthquake studies. Annual Review of Earth and Planetary Sciences, 25(1), 301–336. https://doi.org/10.1146/annurev.earth.25.1.301.

Sigbjörnsson R., Snæbjörnsson J., Valsson G., Sigurdsson T. & Rupakhety R., 2018. Surface strain rate tensor field for Iceland based on a GPS network. [in:] Rupakhety R. & Ólafsson S. (eds.), Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson. ICESD 2017, Geotechnical, Geological and Earthquake Engineering, 44, Springer, Cham, 107–119. https://doi.org/10.1007/978-3-319-62099-2_9.

Szczerbowski Z., 2019. Czasoprzestrzenne związki pomiędzy sezonowymi zmianami pozycji stacji GNSS a wysokoenergetycznymi wstrząsami sejsmicznymi w Górnośląskim Zagłębiu Węglowym [Spatiotemporal relations between seasonal changes of positions of GNSS stations and high energy tremors in The Upper Silesian Coal Basin]. Przegląd Górniczy, 75(12), 30–37.

Szczerbowski Z. & Jura J., 2015. Mining induced seismic events and surface deformations monitored by GPS permanent stations. Acta Geodynamica et Geomaterialia, 12(3), 237–248. https://doi.org/10.13168/AGG.2015.0023.

Teper L., 1998. Wpływ nieciągłości podłoża karbonu na sejsmotektonikę północnej części Górnośląskiego Zagłębia Węglowego [Seismotectonics in the Northern Part of the Upper Silesian Coal Basin: Deep-seated Fractures-Controlled Pattern]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 1715, Wydawnictwo Uniwersytetu Śląskiego, Katowice.

Teper L. & Sagan G., 1995. Geological history and mining seismicity in Upper Silesia (Poland). [in:] Rossmanith H.P. (ed.), Mechanics of Jointed and Faulted Rock, Balkema, Rotterdam, 939–943.

Teper L., Idziak A.F., Sagan G. & Zuberek W.M., 1992. New approach to the studies of the relations between tectonics and mining tremors occurrence on example of Upper Silesian Coal Basin (Poland). Acta Montana A, 2(88), 161–177.

Teisseyre R., 1983. Indukowana sejsmiczność i wstrząsy pochodzenia eksploatacyjnego. [in:] Jucha S. & Teisseyre R. (red.), Fizyka i ewolucja wnętrza Ziemi. Część 2, Państwowe Wydawnictwo Naukowe, Warszawa, 254–260.

Witkowski W.T., Łukosz M., Guzy A. & Hejmanowski R., 2021. Estimation of mining-induced horizontal strain tensor of land surface applying InSAR. Minerals, 11(7), 788. https://doi.org/10.3390/min11070788.

Znosko J., 1965. Pozycja tektoniczna śląsko-krakowskiego zagłębia węglowego [Tectonic position of the Silesia-Cracow Coal Basin]. Z Badań Tektonicznych w Polsce, 1, Biuletyn Instytutu Geologicznego, 188, s. 73–120.

Zuberek W.M., Teper L., Idziak A.F. & Sagan G., 1996. Tectonophysical approach to the description of mining-induced seismicity in the Upper Silesia. [in:] Idziak A. (ed.), Tectonophysics of Mining Areas, Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 1602, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 79–98.

Zuberek W.M., Teper L., Idziak A.F. & Sagan G., 1997. Seismicity and tectonics in the Upper Silesian Coal Basin, Poland. [in:] Podemski M. (ed.), Proceedings of the XIII International Congress on the Carboniferous and Permian, Prace Państwowego Instytutu Geologicznego, 157, Państwowy Instytut Geologiczny, Warszawa, 199–207.

Zuchiewicz W., Badura J. & Jarosiński M., 2007. Neotectonics of Poland: An overview of active faulting. Studia Quaternaria, 24, 5–20.

Żelaźniewicz A., Aleksandrowski P., Buła Z., Karnkowski P., Konon A., Ślęczka A., Żaba J. & Żytko K., 2011. Regionalizacja tektoniczna Polski. Komitet Nauk Geologicznych PAN, Wrocław.

Downloads

Published

2025-06-25

Issue

Section

Articles

How to Cite

Szczerbowski, Z. (2025). Local tectonic stress regime in the Upper Silesian Coal Basin using primary geodetic data. Geology, Geophysics and Environment, 51(2), 149–172. https://doi.org/10.7494/geol.2025.51.2.149

Most read articles by the same author(s)