The combination of soil magnetometry with portable XRF spectroscopy as  an effective tool for the assessment of sources of trace elements in topsoil

Authors

DOI:

https://doi.org/10.7494/geol.2025.51.2.133

Keywords:

X-ray spectroscopy, soil magnetometry, soil pollution assessment, geochemical indices, anthropogenic impact

Abstract

The origin of potentially toxic elements (PTEs) may influence their persistence, mobility and determine the extent to which they pose a threat to the soil environment. Therefore, the research objective of this study was to obtain information on the origin of nine PTEs present in the soil at two Natura 2000 protected areas. The second objective was to test the usability of three popular soil indices in assessing soil pollution in the study area. The research was carried out in two forested areas belonging to the Natura 2000 network of European protected areas, located in the Cieszyn region (southern Poland) on the Polish-Czech border. The research involved the analysis of the distribution of elements in topsoil cores (to 30 cm depth), based on high-resolution measurements obtained from a combination of soil magnetometry and portable XRF spectrometer (pXRF). Measurement of the vertical distribution of volume magnetic susceptibility (κ) along the core was performed using a Bartington MS2C sensor and the analysis of PTE contents using an Explorer 7000 XRF spectrometer. Based on the obtained results, three popular geochemical indices of soil contamination with metals and metalloids were calculated: geo-accumulation index (Igeo), single pollution index (PI), and enrichment index (EF).
Research has shown that the use of a pXRF spectrometer allows for the assessment of the distribution of PTEs in the soil profile with high accuracy, as well as a precise determination of the source of these elements and tracking the migration of pollutants deep into the soil profile. The peak of magnetic susceptibility values in the upper part of the profile strongly correlated with the contents of Pb, As and Zn, which confirmed the anthropogenic origin of these PTEs in the soil in both study areas. The distribution pattern of most of the remaining studied elements (Ti, V, Cr, Co, and Ni) in the soil profile and the analysis of geochemical indicators (Igeo , PI and EF) indicated their lithogenic and/or pedogenic origin.
The use of a pXRF spectrometer allows the assessment of the distribution of PTEs in the soil profile with high measurement resolution and enables precise determination of the source of elements, tracking the migration of pollutants down the soil profile. The combination of soil magnetometry and pXRF, supported by the analysis of geochemical indicators, has proven to be a very effective tool in examining soil contamination and environmental site assessment.

Downloads

Download data is not yet available.

References

Adamo P., Agrelli D. & Zampella M., 2018. Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMs) in polluted soils. [in:] De Vivo B., Belkin H.E. & Lima A. (eds.), Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, Elsevier, 153–194. https://doi.org/10.1016/B978-0-444-63763-5.00010-0.

Adamu C.L. & Nganje T.N., 2010. Heavy metal contamination of surface soil in relationship to land use patterns: A case study of Benue State, Nigeria. Materials Sciences and Applications, 1(3), 127–134. https://doi.org/10.4236/msa.2010.13021.

Błońska E., Lasota J., Szuszkiewicz M., Łukasik A. & Klamerus-Iwan A., 2016. Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environmental Earth Sciences, 75(16), 1205. https://doi.org/10.1007/s12665-016-6005-7.

Borůvka L. & Vácha R., 2006. Litavka River alluvium as a model area heavily polluted with potentially risk elements. [in:] Mo-rel J.L., Echevarria G. & Goncharova N. (eds.), Phytoremediation of Metal-Contaminated Soils, Springer, Dordrecht, 267–298. https://doi.org/10.1007/1-4020-4688-X_9.

Borůvka L., Vacek O. & Jehlička J., 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128(3–4), 289–300. https://doi.org/10.1016/j.geoderma.2005.04.010.

Bourliva A., Papadopoulou L., Aidona E., Giouri K., Simeonidis K. & Vourlias G., 2017. Characterization and geochemistry of technogenic magnetic particles (TMPs) in contaminated industrial soils: Assessing health risk via ingestion. Geoderma, 295, 86–97. https://doi.org/10.1016/j.geoderma.2017.02.001.

Caeiro S., Costa M.H., Ramos T.B., Fernandes F., Silveira N. & Coimbra A., 2005. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 5(2), 151–169. https://doi.org/10.1016/j.ecolind.2005.02.001.

Elias P. & Gbadegesin A., 2011. Spatial relationships of urban land use, soils and heavy metal concentrations in Lagos Mainland Area. Journal of Applied Sciences and Environmental Management, 15(2), 391–399. https://doi.org/10.4314/jasem.v15i2.68533.

Fernandez C., Labanowski J., Cambier P., Jongmans A.G. & van Oort F., 2007. Fate of airborne metal pollution in soils as related to agricultural management. 1. Zn and Pb distributions in soil profiles. European Journal of Soil Science, 58(3), 547–559. https://doi.org/10.1111/j.1365-2389.2006.00827.x.

García-Sánchez A., Alonso-Rojo P. & Santos-Francés F., 2010. Distribution and mobility of arsenic in soils of a mining area (Western Spain). Science of the Total Environment, 408(19), 4194–4201. https://doi.org/10.1016/j.scitotenv.2010.05.032.

Gregorauskienė V. & Kadunas V., 2006. Vertical distribution patterns of trace and major elements within soil profile in Lithuania. Geological Quarterly, 50(2), 229–237.

Gong Q., Deng J., Xiang Y., Wang Q. & Yang L., 2008. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4.

Gucwa I. & Pelczar A., 1972. Geochemia warstw cieszyńskich Śląska Cieszyńskiego. Geological Quarterly, 16(2), 405–419.

Håkanson L., 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

Hu Y., Liu X., Bai J., Shih K., Zeng E.Y. & Cheng H., 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20(9), 6150–6159. https://doi.org/10.1007/s11356-013-1668-z.

International Organization for Standardization, 2019. Soil quality – Guideline for the screening of soil polluted with toxic elements using soil magnetometry (ISO 21226:2019). https://www.iso.org/standard/70136.html [access: 13.11.2024].

Jabłońska M., Rachwał M., Wawer M., Kądziołka-Gaweł M., Teper E., Krzykawski T. & Smołka-Danielowska D., 2021. Mineralogical and chemical specificity of dusts originating from iron and non-ferrous metallurgy in the light of their magnetic susceptibility. Minerals, 11(2), 216. https://doi.org/10.3390/min11020216.

Kierczak J., Neel C., Aleksander-Kwaterczak U., Helios-Rybicka E., Bril H. & Puziewicz J., 2008. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere, 73(5), 776–784. https://doi.org/10.1016/j.chemosphere.2008.06.015.

Kondracki J., 2002. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa.

Kowalska J., Mazurek R., Gąsiorek M., Setlak M., Zaleski T. & Waroszewski J., 2016. Soil pollution indices conditioned by medieval metallurgical activity: A case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053.

Kowalska J.B., Mazurek R., Gąsiorek M. & Zaleski T., 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination – A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z.

Lis J. & Pasieczna A., 1995. Geochemical atlas of Poland: 1:2.500.000 = Atlas geochemiczny Polski. Polish Geological Institute, Warsaw.

Magiera T., Strzyszcz Z., Kapička A. & Petrovský E., 2006. Discrimination of lithogenic and anthropogenic influences on top-soil magnetic susceptibility in Central Europe. Geoderma, 130(3–4), 299–311. https://doi.org/10.1016/j.geoderma.2005.02.002.

Magiera T., Jabłońska M., Strzyszcz Z., Rachwał M., 2011. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmospheric Environment, 45(25), 4281–4290. https://doi.org/10.1016/j.atmosenv.2011.04.076.

Magiera T., Łukasik A., Zawadzki J. & Roesler W., 2019. Magnetic susceptibility as indicator of anthropogenic disturbances in forest topsoil: A review of magnetic studies carried out in Central European forests. Ecological Indicator, 106, 105518. https://doi.org/10.1016/j.ecolind.2019.105518.

Magiera T., Kyzioł-Komosińska J., Dzieniszewska A., Wawer M. & Żogała B., 2020. Assessment of elements mobility in anthropogenic layer of historical wastes related to glass production in Izera Mountains (SW Poland). Science of the Total Environment, 735, 139526. https://doi.org/10.1016/j.scitotenv.2020.139526.

Magiera T., Górka-Kostrubiec B., Szumiata T. & Wawer M., 2021. Technogenic magnetic particles from steel metallurgy and iron mining in topsoil: Indicative characteristic by magnetic parameters and Mössbauer spectra. Science of the Total Environment, 775, 145605. https://doi.org/10.1016/j.scitotenv.2021.145605.

Magiera T. & Szuszkiewicz M., 2025. Combination of portable X-ray fluorescence with soil magnetometry as an effective tool for distinguish different pollution sources. Land Degradation & Development, 36(8), 2543–2556. https://doi.org/10.1002/ldr.5515.

Mazurek R., Kowalska J., Gąsiorek M., Zadrożny P., Józefowska A. & Zaleski T., 2017. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126.

Mazurek R., Kowalska J.B., Gąsiorek M., Zadrożny P. & Wieczorek J., 2019. Pollution indices as comprehensive tools for evaluation of the accumulation and provenance of potentially toxic elements in soils in Ojców National Park. Journal of Geochemical Exploration, 201, 13–30. https://doi.org/10.1016/j.gexplo.2019.03.001.

Mossop K.F. & Davidson C.M., 2003. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478(1), 111–118. https://doi.org/10.1016/S0003-2670(02)01485-X.

Müller G., 1969. Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

Podlešáková E., Némeček J. & Vácha R., 2001. Mobility and bioavailability of trace elements in soils. [in:] Iskandar I.K. & Kirkham M.B. (eds.), Trace Elements in Soil: Bioavailability, Flux, and Transfer, CRC Press, Boca Raton, 21–42.

Reimann C. & de Caritat P., 2005. Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337(1–3), 91–107. https://doi.org/10.1016/j.scitotenv.2004.06.011.

Reimann C. & Garrett R.G., 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346(1–3), 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047.

Rozporządzenie, 2016. Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Dz.U. 2016 poz. 1395 [Regulation of the Minister of the Environment of 1 September 2016 on the method of conducting the assessment of land surface contamination. Journal of Laws of 2016 no. 2016, item 1395].

Różkowski J., Ślósarczyk K., Jakóbczyk-Karpierz S. & Rubin H., 2020. Występowanie i geneza WWA w wodach podziemnych obszaru Natura 2000 Cieszyńskie Źródła Tufowe oraz ochrona tych wód przed zanieczyszczeniem [Occurrence, sources of PAHs, and groundwater protection against pollution in the Cieszyńskie Źródła Tufowe Natura 2000 area]. Przegląd Geologiczny, 68(4), 249–255. https://doi.org/10.7306/2020.12.

Sajn R., 2005. Using attic dust and soil for the separation of anthropogenic and geogenic elemental distributions in an old metallurgical area (Celje, Slovenia). Geochemistry: Exploration, Environment, Analysis, 5(1), 59–67. https://doi.org/10.1144/1467-7873/03-050.

Szuszkiewicz M., Łukasik A., Magiera T. & Mendakiewicz M., 2016. Combination of geo- pedo and technogenic magnetic and geochemical signals in soil profiles – Diversification and its interpretation: A new approach. Environmental Pollution, 214, 464–477. https://doi.org/10.1016/j.envpol.2016.04.044.

Szuszkiewicz M., Petrovský E., Łukasik A., Gruba P., Grison H. & Szuszkiewicz M.M., 2021. Technogenic contamination or geogenic enrichment in Regosols and Leptosols? Magnetic and geochemical imprints on topsoil horizons. Geoderma, 381, 114685. https://doi.org/10.1016/j.geoderma.2020.114685.

Wang X.S. & Qin Y., 2006. Use of multivariate statistical analysis to determine the relationship between the magnetic properties of urban topsoil and its metal, S, and Br content. Environmental Geology, 51(4), 509–551. https://doi.org/10.1007/s00254-006-0347-5.

Wawer M., 2020. Identification of technogenic magnetic particles and forms of occurrence of potentially toxic elements present in Fly ashes and soil. Minerals, 10(12), 1066. https://doi.org/10.3390/min10121066.

Zawadzki J., Szuszkiewicz M., Fabijańczyk P. & Magiera T., 2016. Geostatistical discrimination between different sources of soil pollutants using a magneto-geochemical data set. Chemosphere, 164, 668–676. https://doi.org/10.1016/j.chemosphere.2016.08.145.

Zhang C., Selinus O. & Kjellström G., 1999. Discrimination between natural background and anthropogenic pollution in environmental geochemistry – exemplified in an area of south-eastern Sweden. Science of the Total Environment, 243–244, 129–140. https://doi.org/10.1016/S0048-9697(99)00368-X.

Published

2025-05-23

Issue

Section

Articles

How to Cite

Magiera, T., & Wawer-Liszka, M. (2025). The combination of soil magnetometry with portable XRF spectroscopy as  an effective tool for the assessment of sources of trace elements in topsoil. Geology, Geophysics and Environment, 51(2), 133–148. https://doi.org/10.7494/geol.2025.51.2.133