An attempt to determine the cause of the strong tremor responsible for a rockburst in a hard coal mine based on numerical modeling and spectral parameter
DOI:
https://doi.org/10.7494/geol.2024.50.4.323Keywords:
hard coal, longwall mining, rockburst hazard, maximum shear stress, numerical modeling, induced seismicity, seismic source parametersAbstract
Seismic and rockburst hazards represent significant challenges during the longwall mining of coal seams. One analytical approach to assess the potential for rockburst hazards involves reconstructing the stress conditions within the rock mass. This article reports on the findings from three-dimensional (3D) numerical modeling aimed at examining the distribution of maximum shear stress within the rock mass amid the longwall mining operations of the 703/1 coal seam in a mine situated in the Upper Silesian Coal Basin, Poland which was disrupted by a rockburst incident. On the day of the rockburst, substantial concentrations of maximum shear stress were identified in a thick sandstone layer proximate to the boundary of the overlying 624 coal seam located significantly above the 703/1 coal seam. The calculated maximum shear stress demonstrated an increase of approximately 80% over the values observed in the absence of edge effects. Furthermore, a higher concentration of maximum shear stress was identified within the geologically weaker strata adjacent to the 703/1 coal seam. These observations facilitated the classification of the examined rockburst as a stress-stroke phenomenon. Additionally, the study determined the spectral parameters of the tremor, which possessed an energy of
9.8 × 107 J and triggered the analyzed rockburst. The ratio of the seismic energy of S and P-waves confirmed a shear mechanism in the focus. The scope of inelastic deformation within the focal zone was also quantified. Following the event, the rock mass that had been destressed due to the significant tremor and subsequent rockburst exhibited reduced seismic activity upon the resumption of longwall mining of the 703/1 coal seam.
Downloads
References
Aki K. & Richards P.G., 1980. Quantitative Seismology: Theory and Methods. Freeman, San Francisco.
Andrews D.J., 1986. Objective determination of source parameters and similarity of earthquakes of different size. [in:] Das S., Boatwright J. & Scholz C.H. (eds.), Earthquake Source Mechanics, Geophysical Monograph Series, 6, American Geophysical Union, Washington, D.C., 259–267. https://doi.org/10.1029/GM037p0259.
Barański A., Drzewiecki J., Dubiński J., Kabiesz J., Konopko W., Kornowski J., Kurzeja J., Lurka A., Makówka J., Mutke G. & Stec K., 2012. Zasady stosowania „Metody kompleksowej i metod szczegółowych oceny stanu zagrożenia tąpaniami w kopalniach węgla kamiennego”. Instrukcje GIG, 22, Główny Instytut Górnictwa, Katowice.
Boatwright J. & Fletcher J.B., 1984. The partition of radiated energy between P and S waves. Bulletin of the Seismological Society of America, 74(2), 361–376. https://doi.org/10.1785/BSSA0740020361.
Boatwright J. & Quin H., 1986. The seismic radiation from a 3-D dynamic model of a complex rupture process. [in:] Das S., Boatwright J. & Scholz C.H. (eds.), Earthquake Source Mechanics, Geophysical Monograph Series, 6, American Geophysical Union, Washington, D.C., 97–109.
Boore D.M. & Boatwright J., 1984. Average body-wave radiation coefficients. Bulletin of the Seismological Society of America, 74(5), 1615–1621. https://doi.org/10.1785/BSSA0740051615.
Brune J.N., 1970. Tectonic stress and the spectra of seismic shear waves from earthquake. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/JB075i026p04997.
Bukowska M., 2012. The rockbursts in the Upper Silesian Coal Basin in Poland. Journal of Mining Science, 48(3), 445–456. https://doi.org/10.1134/S1062739148030070.
Cai M., 2016. Prediction and prevention of rockburst in metal mines – A case study of Sanshandao gold mine. Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 204–2011. https://doi.org/10.1016/j.jrmge.2015.11.002.
Cai M., Kaiser P.K. & Martin D., 1998. A tensile model for the interpretation of microseismic events near underground openings. Pure and Applied Geophysics, 153(1), 67–92. https://doi.org/10.1007/s000240050185.
Caputa A. & Rudziński Ł., 2019. Source analysis of post-blasting events recorded in deep copper mine, Poland. Pure and Applied Geophysics, 176(8), 3451–3466. https://doi.org/10.1007/s00024-019-02171-x.
Castro L.A.M., Bewick R.P. & Carter T.G., 2012. An overview of numerical modeling applied to deep mining. [in:] Ribeiro e Sousa L., Vargas E., Jr., Fernandes M.M. & Azevedo R. (eds.), Innovative Numerical Modeling in Geomechanics, CRC Press, London, 393–414. https://doi.org/10.1201/b12130-22.
Chen T., Wang X. & Mukerji T., 2015. In situ identification of high vertical stress areas in an underground coal mine panel using seismic refraction tomography. International Journal of Coal Geology, 149, 55–66. https://doi.org/10.1016/j.coal.2015.07.007.
Chi X., Yang K. & Wei Z., 2021. Breaking and mining-induced stress evolution of overlying strata in the working face of a steeply dipping coal seam. International Journal of Coal Science and Technology, 8(4), 614–625. https://doi.org/10.1007/s40789-020-00392-3.
Corkum A.G. & Board M.P., 2016. Numerical analysis of longwall mining layout for a Wyoming Trona Mine. International Journal of Rock Mechanics and Mining Sciences, 89, 94–108. https://doi.org/10.1016/j.ijrmms.2016.09.001.
Domański B. & Gibowicz S.J., 2008. Comparison of source parameters estimated in the frequency and time domains for seismic events at the Rudna copper mine, Poland. Acta Geophysica, 56(2), 324–343. https://doi.org/10.2478/s11600-008-0014-1.
Dubiński J., 2013. The mechanism and consequences of strong mining tremors that occur in Polish hard coal and copper mines. [in:] Kwaśniewski M. & Łydźba D. (eds.), Rock Mechanics for Resources, Energy and Environment: Proceedings of the ISRM International Symposium (EUROCK 2013), Taylor & Francis Group, London, UK, 31–38.
Dubiński J. & Dworak J., 1989. Recognition of the zones of seismic hazard in Polish coal mines by using a seismic method. Pure and Applied Geophysics, 129(3–4), 609–617. https://doi.org/10.1007/BF00874528.
Dubiński J. & Konopko W., 2000. Tąpania: ocena, prognoza, zwalczanie. Główny Instytut Górnictwa, Katowice.
Dubiński J. & Wierzchowska Z., 1973. Metody obliczeń energii wstrząsów górotworu na Górnym Śląsku. Prace Głównego Instytutu Górnictwa. Komunikat, 591, Główny Instytut Górnictwa, Katowice.
Dubiński J., Mutke G. & Stec K., 1996. Focal mechanism and source parameters of the rockbursts in Upper Silesian Coal Basin. Acta Montana IRSM AS CR, 9(100), 17–26.
Esterhuizen G.S., Gearhart D.F., Klemetti T., Dougherty H. & van Dyke M., 2019. Analysis of gateroad stability at two longwall mines based on field monitoring results and numerical model analysis. International Journal of Mining Science and Technology, 29(1), 35–43. https://doi.org/10.1016/j.ijmst.2018.11.021.
Gibowicz S.J., 1984. The mechanism of large mining tremors in Poland. [in:] Gay N.C. & Wainwright Å.H. (eds.), Rockbursts and Seismicity in Mines, South African Institute of Mining and Metallurgy Symposium Series, 6, Southern African Institute of Mining and Metallurgy, Johannesburg, 17–28.
Gibowicz S.J. & Kijko A. 1994. An Introduction to Mining Seismology. Academic Press, San Diego.
Hanks T.C. & Kanamori H., 1979. A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348.
He M., Cheng T., Qiao Y. & Li H., 2022. A review of rockburst: Experiments, theories, and simulations. Journal of Rock Mechanics and Geotechnical Engineering, 15(5), 1312–1353. https://doi.org/10.1016/j.jrmge.2022.07.014.
Hosseini Z., Beruar O., Sampson-Forsythe A. & Yao M., 2010. Mining strategies of multi-sill pillars in burst prone ground conditions at Vale Inco’s Coleman Mine [conference paper]. 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, Salt Lake City, Utah, June 2010, ARMA-10-456. https://onepetro.org/ARMAUSRMS/proceedings-abstract/ARMA10/All-ARMA10/ARMA-10-456/118022 [access: 20.03.2024].
Itasca Consulting Group Inc., 2013. FLAC3D – Fast Lagrangian Analysis of Continua in 3 Dimensions User Manual: Version 5.01. USA.
Jing L., 2003. A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283–353. https://doi.org/10.1016/S1365-1609(03)00013-3.
Konicek P. & Schreiber J., 2018. Heavy rockbursts due to longwall mining near protective pillars: A case study. International Journal of Mining Science and Technology, 28(5), 799–805. https://doi.org/10.1016/j.ijmst.2018.08.010.
Krawiec K. & Czarny R., 2017. Comparison of an empirical S-wave velocity model and a calculated stress-strain model for a rock mass disturbed by mining. E3S Web of Conferences, 24, 03001. https://doi.org/10.1051/e3sconf/20172403001.
Kwiatek G., Martinez-Garzon P. & Bohnhoff M., 2016. HybridMT: A MATLAB/shell environment package for seismic moment tensor inversion and refinement. Seismological Research Letters, 87(4), 964–976. https://doi.org/10.1785/0220150251.
Li M., Zhou N., Zhang J. & Liu Z., 2017. Numerical modeling of mechanical behavior of coal mining hard roofs in different backfill ratios: A case study. Energies, 2017(10), 1005. https://doi.org/10.3390/en10071005.
Li Y. & Mitri H.S., 2022. Determination of mining-induced stresses using diametral rock core deformations. International Journal of Coal Science and Technology, 9(1), 80. https://doi.org/10.1007/s40789-022-00549-2.
Li Z., He X., Dou L., Song D., 2018. Comparison of rockburst occurrence during extraction of thick coal seams using top-coal caving versus slicing mining methods. Canadian Geotechnical Journal, 55(10), 1433–1450. https://doi.org/10.1139/cgj-2016-0631.
Lizurek G. & Wiejacz P., 2011. Moment tensor solution and physical parameters of selected recent seismic events at Rudna copper mine. [in:] Idziak A.F. & Dubiel R. (eds.), Geophysics in Mining and Environmental Protection, Geoplanet: Earth and Planetary Sciences, 2, Springer, Berlin, Heidelberg, 11–19. https://doi.org/10.1007/978-3-642-19097-1_2.
Lizurek G., Rudziński Ł. & Plesiewicz B., 2015. Mining induced seismic event on an inactive fault. Acta Geophysica, 63(1), 176–200. https://doi.org/10.2478/s11600-014-0249-y.
Madariaga R., 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666. https://doi.org/10.1785/BSSA0660030639.
Manouchehrian A. & Cai M., 2017. Analysis of rockburst in tunnels subjected to static and dynamic loads. Journal of Rock Mechanics and Geotechnical Engineering, 9(6), 1031–1040. https://doi.org/10.1016/j.jrmge.2017.07.001.
Mazaira A. & Konicek P., 2015. Intense rockburst impacts in deep underground construction and their prevention. Canadian Geotechnical Journal, 52(10), 1426–1439. https://doi.org/10.1139/cgj-2014-0359.
McGarr A., Bicknell J., Sembera E. & Green R.W.E., 1989. Analysis of exceptionally large tremors in two gold mining districts of South Africa. Pure and Applied Geophysics, 129(3–4), 295–307. https://doi.org/10.1007/BF00874511.
Mendecki A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall, London. https://doi.org/10.1007/978-94-009-1539-8.
Müller W., 1991. Numerical simulation of rockbursts. Mining Science and Technology, 12(1), 27, https://doi.org/10.1016/0167-9031(91)91513-h.
Nordström E., Dineva S. & Nordlund E., 2017. Source parameters of seismic events potentially associated with damage in block 33/34 of the Kiirunavaara mine (Sweden). Acta Geophysica, 65(6), 1229–1242. https://doi.org/10.1007/s11600-017-0066-1.
Ortlepp W.D. & Stacey T.R., 1994. Rockburst mechanisms in tunnels and shafts. Tunnelling and Underground Space Technology, 9(1), 59–65. https://doi.org/10.1016/0886-7798(94)90010-8.
Pilecka E. & Szwarkowski D., 2018. The influence of the fault zone width on land surface vibrations after the high-energy tremor in the “Rydułtowy-Anna” hard coal mine. E3S Web of Conferences, 36, 02007. https://doi.org/10.1051/e3sconf/20183602007.
Pilecka E., Stec K., Chodacki J., Pilecki Z., Szermer-Zaucha R. & Krawiec K., 2021. The impact of high-energy mining-induced tremor in a fault zone on damage to buildings. Energies, 14(14), 4112. https://doi.org/10.3390/en14144112.
Pilecki Z., Hildebrandt R., Krawiec K., Pilecka E., Lubosik Z. & Łątka T., 2023. Assessment of combustion cavern geometry in underground coal gasification process with the use of borehole ground-penetrating radar. Energies, 16(18), 6734. https://doi.org/10.3390/en16186734.
Pu Y., Apel D.B. & Lingga B., 2018. Rockburst prediction in kimberlite using decision tree with incomplete data. Journal of Sustainable Mining, 17(3), 158–165. https://doi.org/10.1016/j.jsm.2018.07.004.
Scott D.F., Williams T.J., Tesarik D., Denton I.K., Knoll S.J. & Jordan J., 2004. Geophysical Methods to Detect Stress in Underground Mines. Report of Investigations, 9661, U.S. Department of Health and Human Services, Washington.
Shen B., Duan Y., Luo X., van de Werken M., Dlamini B., Chen L., Vardar O. & Canbulat I., 2020. Monitoring and modelling stress state near major geological structures in an underground coal mine for coal burst assessment. International Journal of Rock Mechanics and Mining Sciences, 129, 104294. https://doi.org/10.1016/j.ijrmms.2020.104294.
Simser B.P., 2019. Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 1036–1043. https://doi.org/10.1016/j.jrmge.2019.07.005.
Snoke J.A., 1987. Stable determination of (Brune) stress drops. Bulletin of the Seismological Society of America, 77(2), 530–538.
Stec K., 2012. Focal mechanisms of mine-induced seismic events an explanation of geomechanical processes in the area of Longwall 6, Seam 510 in Hard Coal Mine “Bobrek-Centrum”. Archives of Mining Sciences, 57(4), 871–886. https://doi.org/10.2478/v10267-012-0057-7.
Stec K., 2017. Określenie przyczyny wysokoenergetycznych wstrząsów górotworu na podstawie parametrów mechanizmu ognisk [Causes of the occurrence of high-energy seismic events based on focal mechanism parameters]. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 101, 19–32.
Stec K. & Błaszczyk E., 2008. Charakterystyka procesów zachodzących w ogniskach wysokoenergetycznych wstrząsów występujących w czasie eksploatacji ściany 17 w pokładzie 361 w KWK „Knurów” [Characteristics of the processes taking place at the sources of high energy tremors occurring during mining of coalface no. 17 in coal seam no. 361 of the Knurów coal mine]. Gospodarka Surowcami Mineralnymi, 24(2/3), 245–259.
Stec K. & Wojtecki Ł., 2011. Charakterystyka mechanizmu ognisk wstrząsów górotworu związanych z eksploatacją pokładu 510 ścianą 502 w kopalni węgla kamiennego Bielszowice [Characteristics of the mine tremor source mechanism associated with the mining in the seam 510, the longwall 502 in the “Bielszowice” coal mine]. Prace Naukowe GIG. Górnictwo i Środowisko, 1, 61–77.
Szreder Z., Pilecki Z. & Kłosinski J., 2008. Comparison of Profiling Results of Attenuation and Velocity of Refracted P-wave in Coal-seam. [in:] Near Surface 2008: 14th European Meeting of Environmental and Engineering Geophysics: 15–17 September 2008 Kraków, Poland: Extended Abstracts & Exhibitors’ Catalogue, European Association of Geoscientists & Engineers, The Netherlands, 1–5. https://doi.org/10.3997/2214-4609.20146265.
Tang Y., Sun W., Zhang X. & Liu P., 2021. Effect of advancing direction of working face on mining stress distribution in deep coal mine. Advances in Civil Engineering, 2021(1), 7402164. https://doi.org/10.1155/2021/7402164.
Trifu C.I., Urbancic T.I. & Young R.P., 1995. Source parameters of mining-induced seismic events: An evaluation of homogeneous and inhomogeneous faulting models for assessing damage potential. Pure and Applied Geophysics, 145(1), 3–27. https://doi.org/10.1007/BF00879480.
Wang J., Qiu P., Ning J., Zhuang L. & Yang S., 2020. A numerical study of the mining‐induced energy redistribution in a coal seam adjacent to an extracted coal panel during longwall face mining: A case study. Energy Science and Engineering, 8(3), 817–835. https://doi.org/10.1002/ese3.553.
Wang J., Apel D.B., Pu Y., Hall R., Wei, C. & Sepehri M., 2021. Numerical modeling for rockbursts: A state-of-the-art review. Journal of Rock Mechanics and Geotechnical Engineering, 13(2), 457–478. https://doi.org/10.1016/j.jrmge.2020.09.011.
Wang J., Apel D.B., Dyczko A., Walentek A., Prusek S., Xu H. & Wei C., 2022a. Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1674–1696. https://doi.org/10.1016/j.jrmge.2022.01.009.
Wang J., Apel D.B., Xu H., Wei C. & Skrzypkowski K., 2022b. Evaluation of the effects of yielding rockbolts on controlling self-initiated strainbursts: A numerical study. Energies, 15(7), 2574. https://doi.org/10.3390/en15072574.
Wang P., Zhao J., Feng G. & Wang Z., 2018. Interaction between vertical stress distribution within the goaf and surrounding rock mass in longwall panel systems. Journal of the Southern African Institute of Mining and Metallurgy, 118(7), 745. https://doi.org/10.17159/2411-9717/2018/v118n7a8.
Wojtecki Ł., Mendecki M.J. & Zuberek W.M., 2016. The seismic source parameters of tremors provoked by destress blastings in coal seam. Journal of Mining Science, 52(2), 258–264. https://doi.org/10.1134/S1062739116020382.
Wojtecki Ł., Konicek P., Mendecki M.J., Gołda I. & Zuberek W.M., 2019. Geophysical evaluation of effectiveness of blasting for roof caving during longwall mining of coal seam. Pure and Applied Geophysics, 177(2), 905–917. https://doi.org/10.1007/s00024-019-02321-1.
Wyss M. & Brune J.N., 1968. Seismic moment, stress and source dimensions for earthquakes in the California-Nevada region. Journal of Geophysical Research, 73(14), 4681–4694. https://doi.org/10.1029/JB073i014p04681.
Yasitli N.E. & Unver B., 2005. 3-D numerical modeling of stresses around a longwall panel with top coal caving. Journal of the Southern African Institute of Mining and Metallurgy, 105(5), 287–300.
Zhu G., Dou L., Li Z., Cai W., Kong Y. & Li J., 2016. Mining-induced stress changes and rockburst control in a variable-thickness coal seam. Arabian Journal of Geosciences, 9(5), 365. https://doi.org/10.1007/s12517-016-2356-3.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)