The evolution of the moraine complex in the Fiescher Valley (Berner Alps, Switzerland) in the light of Schmidt-hammer exposure-age dating and sedimentological analysis
DOI:
https://doi.org/10.7494/geol.2025.51.1.5Keywords:
Berner Alps, Fiescher Valley, Schmidt-hammer exposure age-dating, clast shape analysis, calibration curveAbstract
The sediment-landform assemblages preserved in many alpine valleys record glacier fluctuations during the latest Pleistocene and Holocene, encompassing the moraines formed during the Egesen stadial as well as Early Holocene and Neoglacial advances. This paper is concerned with the moraine evolution in the Fiescher Valley, a relatively large glaciated alpine valley system in the Berner Alps, which hosts the fourth-largest glacier in the Alps.
A geomorphological and sedimentological analysis, supplied with Schmidt-hammer exposure age-dating, was used on the preserved moraine sequence along a 7-kilometre section of the valley. Calibrated Schmidt-hammer weathering results provide evidence of the multiphase glacier readvances of the Fischer glacier during the Younger Dryas and Early Holocene. The exposure age of Holocene boulders strongly differs with the time of moraine formation as a result of the incorporation of more weathered boulders that originated by earlier glacier fluctuations and rockfall activity. We thus infer that the previously formed Middle Holocene moraines were overridden by the much more extensive LIA advance. Sediment transport pathways in the Fiescher Valley were dominated by subglacial active erosion and transportation pathways of massive crystalline rocks, discernible via the large proportion of subrounded and subangular clasts. We found that significant and multiple glacial remodelling is arguably the most efficient way to reduce the initial platy shape of granitic and gneiss clasts, but a dependence between clast form and roundness with distance is hardly visible.
Downloads
References
Avian M., Kellerer-Pirklbauer A. & Lieb G.K., 2018. Geomorphic consequences of rapid deglaciation at Pasterze Glacier, Hohe Tauern Range, Austria, between 2010 and 2013 based on repeated terrestrial laser scanning data. Geomorphology, 310, 1–14. https://doi.org/10.1016/j.geomorph.2018.02.003.
Ballantyne C.K., 1982. Aggregate clast form characteristics of deposits near the margins of four glaciers in the Jotunheimen Massif, Norway. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 36(2), 103–113. https://doi.org/10.1080/00291958208621960.
Baroni C., Gennaro S., Salvatore M.C., Ivy-Ochs S., Christl M., Cerrato R. & Orombelli G., 2021. Last Lateglacial glacier ad-vance in the Gran Paradiso Group reveals relatively drier climatic conditions established in the Western Alps since at least the Younger Dryas. Quaternary Science Reviews, 255, 106815. https://doi.org/10.1016/j.quascirev.2021.106815.
Benn D.I. & Ballantyne C.K., 1994. Reconstructing the transport history of glacigenic sediments: a new approach based on the co-variance of clast form indices. Sedimentary Geology, 91(1–4), 215–227. https://doi.org/10.1016/0037-0738(94)90130-9.
Benn D.I., Kirkbride M.P., Owen L.A. & Brazier V., 2003. Glaciated valley landsystems. [in:] Evans D.J.A. (ed.), Glacial Landsystems, Arnold, London, 372–406.
Böhlert R., Egli M., Maisch M., Brandová D., Ivy-Ochs S., Kubik P.W. & Haeberli W., 2011. Application of a combination of dating techniques to reconstruct the Lateglacial and early Holocene landscape history of the Albula region (eastern Switzer-land). Geomorphology, 127(1–2), 1–13. https://doi.org/10.1016/j.geomorph.2010.10.034.
Boulton G.S., 1978. Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology, 25(6), 773–799. https://doi.org/10.1111/j.1365-3091.1978.tb00329.x.
Braumann S.M., Schaefer J.M., Neuhuber S.M., Reitne J.M., Lüthgens Ch. & Fiebig M., 2020. Holocene glacier change in the Silvretta Massif (Austrian Alps) constrained by a new 10Be chronology, historical records and modern observations. Qua-ternary Science Reviews, 245, 106493. https://doi.org/10.1016/j.quascirev.2020.106493.
Buchenauer H.W., 1990. Gletscher- und Blockgletschergeschichte der westlichen Schobergruppe (Osttirol). Marburger Geo-graphische Schriften, 117, Selbstverlag der Marburger Geographischen Gesellschaft, Marburg/Lahn.
Dąbski M., Badura I., Kycko M., Grabarczyk A., Matlakowska R. & Otto J.Ch., 2023. The development of limestone weather-ing rind in a proglacial environment of the Hallstätter Glacier. Minerals, 13(4), 530. https://doi.org/10.3390/min13040530.
Engel Z., Traczyk A., Braucher R., Woronko B. & Křížek M., 2011. Use of 10Be exposure ages and Schmidt hammer data for correlation of moraines in the Krkonoše Mountains, Poland/Czech Republic. Zeitschrift für Geomorphologie, 55(2), 175–196. https://doi.org/10.1127/0372-8854/2011/0055-0036.
ETH Library’s Image Archive E-Pics, n.d. https://ba.e-pics.ethz.ch/# [access: 11.03.2024].
Federal Office for Meteorology and Climatology MeteoSwiss, n.d. www.meteoswiss.admin.ch [access: 24.01.2024].
Federal Office of Topography Swisstopo, 2024a. Geological Atlas of Switzerland 1:25,000. https://www.swisstopo.admin.ch/en/geological-atlas-of-switzerland-1-25000 [access: 24.01.2024].
Federal Office of Topography Swisstopo, 2024b. National Map 1:25’000. https://www.swisstopo.admin.ch/en/national-map-1-25000 [access: 24.01.2024].
Federal Office of Topography Swisstopo, 2024c. swiss ALTI3D [the high precision digital elevation model of Switzerland]. https://www.swisstopo.admin.ch/en/height-model-swissalti3d [access: 24.01.2024].
Glacier Monitoring in Switzerland (GLAMOS), n.d. www.glamos.ch/en/#inventories/A55f-03 [access: 24.01.2024].
Goodsell B., Hambrey M.J. & Glasser N.F., 2005. Debris transport in a temperate valley glacier: Haut Glacier d’Arolla, Valais, Switzerland. Journal of Glaciology, 51(172), 139–146. https://doi.org/10.3189/172756505781829647.
Goudie A.S., 2006. The Schmidt Hammer in geomorphological research. Progress in Physical Geography, 30(6), 703–718. https://doi.org/10.1177/0309133306071954.
Gross G., Kerschner H. & Patzelt G., 1977. Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten. Zeitschrift für Gletscherkunde und Glazialgeologie, 12(2), 223–251.
Hambrey M., Glasser N., & Goodsell B., 2002. Formation of band ogives and associated structures at Bas Glacier d’Arolla, Valais, Switzerland. Journal of Glaciology, 48(161), 287–300. https://doi.org/10.3189/172756502781831494.
Holzhauser H., 1984. Zur Geschichte der Aletschgletscher und des Fieschergletschers. Physiche Geographie, 13, University of Zürich, Department of Geography, Zürich, Switzerland.
Hormes A., Müller B.U. & Schlüchter Ch., 2001. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene, 11(3), 255–265. https://doi.org/10.1191/095968301675275728.
Ivy-Ochs S., 2015. Glacier variations in the European Alps at the end of the last glaciation. Cuadernos de Investigación Ge-ográfica: Geographical Research Letters, 41(2), 295–315. https://doi.org/10.18172/cig.2750.
Ivy-Ochs S., Schlüchter C., Kubik P.W., Synal H.A., Beer J. & Kerschner H., 1996. The exposure age of an Egesen moraine at Julier Pass, Switzerland measured with the cosmogenic radionuclides Be-10, Al-26 and Cl-36. Eclogae Geologicae Helve-tiae, 89, 1049–1063. https://doi.org/10.48350/87205.
Ivy-Ochs S., Kerschner H., Reuther A., Maisch M., Sailer R., Schaefer J., Kubik P.W., Synal H.A. & Schlüchter C., 2006. The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. [in:] Siame L.L., Bourlès D.L., Brown E.T. (eds.), In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes, Geological Society of America Special Paper, 415, Geological Society of America, Boulder, Colora-do, 43–60. https://doi.org/10.1130/2006.2415(04).
Ivy-Ochs S., Kerschner H., Maisch M., Christl M., Kubik P.W. & Schlüchter C., 2009. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 28(21–22), 2137–2149. https://doi.org/10.1016/j.quascirev.2009.03.009.
Ivy-Ochs S., Monegato G. & Reitner J.M., 2022. Chapter 58 – The Alps: glacial landforms from the Last Glacial Maximum. [in:] Palacios D., Hughes P.D., García-Ruiz J.M. & de Andrés N. (eds.), European Glacial Landscapes: Maximum Extent of Gla-ciations, Elsevier, 449–460. https://doi.org/10.1016/B978-0-12-823498-3.00030-3.
Ivy-Ochs S., Monegato G. & Reitner J.M., 2023. The Alps: glacial landforms from the Younger Dryas Stadial. [in:] Palacios D., Hughes P.D., García-Ruiz J.M. & de Andrés N. (eds.), European Glacial Landscapes: Last Deglaciation, Elsevier, 525–539. https://doi.org/10.1016/B978-0-323-91899-2.00058-9.
Joerin U.E., Stocker T.F. & Schlüchter C., 2006. Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene, 16(5), 697–704. https://doi.org/10.1191/0959683606hl964rp.
Kellerer-Pirklbauer A., 2008. The Schmidt Hammer as a relative age dating tool for rock glacier surfaces: examples from North-ern and Central Europe. [in:] Kane D.L. & Hinkel K.M. (eds.), Ninth International Conference on Permafrost. Volume 1, In-stitute of Northern Engineering, University of Alaska, Fairbanks, 913–918.
Kelly M.A., Kubik P.W., Von Blanckenburg F. & Schlüchter C., 2004. Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide 10Be. Journal of Quaternary Science, 19(5), 431–441. https://doi.org/10.1002/jqs.854.
Kirkbride M.P. & Winkler S., 2012. Correlation of Late Quaternary moraines: Impact of climate variability, glacier response, and chronological resolution. Quaternary Science Reviews, 46, 1–29. https://doi.org/10.1016/j.quascirev.2012.04.002.
Kłapyta P., 2012. Ewolucja rzeźby wysokogórskiej Tatr Zachodnich w późnym glacjale i holocenie. [in:] Borówka R.K., Cedro A. & Kavetskyy I. (red.), Współczesne problemy badań geograficznych, PPH ZAPOL Dmochowski, Sobczyk, Szczecin, 73–82.
Kłapyta P., 2013. Application of Schmidt hammer relative age dating to Late Pleistocene moraines and rock glaciers in the Western Tatra Mountains, Slovakia. CATENA, 111, 104–121. https://doi.org/10.1016/j.catena.2013.07.004.
Kłapyta P., 2020. Geomorphology of the high-elevated flysch range – Mt. Babia Góra Massif (Western Carpathians). Journal of Maps, 16(2), 689–701. https://www.doi.org/10.1080/17445647.2020.1800530.
Kłapyta P., Mîndrescu M. & Zasadni J., 2021. Geomorphological record and equilibrium line altitude of glaciers during the last glacial maximum in the Rodna Mountains (eastern Carpathians). Quaternary Research, 100, 1–20. https://doi.org/10.1017/qua.2020.90.
Labhart T.P., 1977. Aarmassiv und Gotthardmassiv. Gebrüder Borntraeger, Berlin – Stuttgart.
Le Heron D.P, Kettler Ch., Davies B.J., Scharfenberg L., Eder L., Ketterman M., Griesmeier G.E.U., Quinn R., Chen X., Vandyk T. &. Busfield M.E., 2021. Rapid geomorphological and sedimentological changes at a modern Alpine ice margin: lessons from the Gepatsch Glacier, Tirol, Austria. Journal of the Geological Society, 179(3), jgs2021-052. https://doi.org/10.1144/jgs2021-052.
Longhi A. & Guglielmin M., 2020. Reconstruction of the glacial history after the Last Glacial Maximum in the Italian Central Alps using Schmidt’s hammer R-values and crystallinity ratio indices of soils. Quaternary International, 558, 19–27. https://doi.org/10.1016/j.quaint.2020.08.045.
Longhi A. & Guglielmin M., 2021. The glacial history since the Last Glacial Maximum in the Forni Valley (Italian Central Alps). Reconstruction based on Schmidt’s Hammer R-values and crystallinity ratio indices of soils. Geomorphology, 387, 107765. https://doi.org/10.1016/j.geomorph.2021.107765.
Luetscher M., Hoffmann D.L., Frisia S. & Spötl C., 2011. Holocene glacier history from alpine speleothems, Milchbach cave, Switzerland. Earth and Planetary Science Letters, 302(1–2), 95–106. https://doi.org/10.1016/j.epsl.2010.11.042
Lukas S. & Benn D.I., 2006. Retreat dynamics of Younger Dryas glaciers in the far NW Scottish Highlands reconstructed from moraine sequences. Scottish Geographical Journal, 122(4), 308–325. https://doi.org/10.1080/14702540701235142,
Lukas S., Benn D.I., Boston C.M., Brook M., Coray S., Evans D.J., Graf A., Kellerer-Pirklbauer A., Kirkbride M.P., Krabben-dam M., Lovell H., Machiedo M., Mills S.C., Nye K., Reinardy B.T.I., Ross F.H. & Signer M., 2013. Clast shape analysis and clast transport paths in glacial environments: A critical review of methods and the role of lithology. Earth-Science Re-views, 121, 96–116. https://doi.org/10.1016/j.earscirev.2013.02.005.
Malvern Panalytical, n.d. Morphologi G3. https://www.malvernpanalytical.com/en/support/product-support/morphologi-range/morphologi-g3 [access: 24.01.2024].
Matthews J.A. & Owen G., 2010. Schmidt hammer exposure‐age dating: developing linear age‐calibration curves using Holo-cene bedrock surfaces from the Jotunheimen–Jostedalsbreen regions of southern Norway. Boreas, 39(1), 105–115. https://doi.org/10.1111/j.1502-3885.2009.00107.x.
Matthews J.A. & Shakesby R.A., 1984. The status of the ‘Little Ice Age’ in southern Norway: relative‐age dating of Neoglacial moraines with Schmidt hammer and lichenometry. Boreas, 13(3), 333–346. https://doi.org/10.1111/j.1502-3885.1984.tb01128.x
Matthews J.A. & Wilson P., 2015. Improved Schmidt hammer exposure ages for active and relict pronival ramparts in southern Norway, and their palaeoenvironmental implications. Geomorphology, 246, 7–21. https://doi.org/10.1016/j.geomorph.2015.06.002.
Matthews J.A. & Winkler S., 2011. Schmidt‐hammer exposure‐age dating (SHD): Application to early Holocene moraines and a reappraisal of the reliability of terrestrial cosmogenic‐nuclide dating (TCND) at Austanbotnbreen, Jotunheimen, Norway. Boreas, 40(2), 256–270. https://doi.org/10.1111/j.1502-3885.2010.00178.x.
Matthews J.A. & Winkler S., 2022. Schmidt-hammer exposure-age dating: A review of principles and practice. Earth-Science Reviews, 230, 104038. https://doi.org/10.1016/j.earscirev.2022.104038.
Müller F.B., Caflisch T. & Müller G., 1976. Firn und Eis der Schweizer Alpen: Gletscherinventar. Eidgenössische Technische Hochschule, Geographisches Institut, Zürich.
Mycielska-Dowgiałło E. & Woronko B., 1998. Analiza obtoczenia i zmatowienia ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna. Przegląd Geologiczny, 46(12), 1275–1281.
Pallàs R., Rodés Á., Braucher R., Bourlès D., Delmas M., Calvet M. & Gunnell Y., 2010. Small, isolated glacial catchments as priority targets for cosmogenic surface exposure dating of Pleistocene climate fluctuations, southeastern Pyrenees. Geology, 38(10), 891–894. https://doi.org/10.1130/G31164.1.
Placek A. & Migoń P., 2005. Zastosowanie młotka Schmidta w badaniach geomorfologicznych – potencjał, ograniczenia i wstępne wyniki badań w Sudetach. [in:] Kotarba A., Krzemień K. & Święchowicz J. (red.), Współczesna ewolucja rzeźby Polski: VII Zjazd Geomorfologów Polskich, Kraków, 19–22 września 2005, Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, Kraków, 367–371.
Powers M.C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), 117–119. https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D.
Reznichenko N.V., Davies T.R.H. & Winkler S., 2016. Revised palaeoclimatic significance of Mueller Glacier moraines, South-ern Alps, New Zealand. Earth Surface Processes and Landforms, 41(2), 196–207. https://doi.org/10.1002/esp.3848.
Roberson S., 2008. Structural composition and sediment transfer in a composite cirque glacier: Glacier de St. Sorlin, France. Earth Surface Processes and Landforms, 33(13), 1931–1947. https://doi.org/10.1002/esp.1635.
Rounce D.R., Hock R., Maussion F., Hugonnet R., Kochtitzky W., Huss M., Berthier E., Brinkerhoff D., Compagno L., Copland L., Farinotti D., Menounos B. & McNabb R.W., 2023. Global glacier change in the 21st century: Every increase in tempera-ture matters. Science, 379(6627), 78–83. https://doi.org/10.1126/science.abo1324.
Scapozza C., 2012. Stratigraphie, morphodynamique, paléoenvironnements des terrains sédimentaires meubles à forte déclivité du domaine périglaciaire alpin, Géovisions, 40, Université de Lausanne, Lausanne, Suisse.
Scapozza C., Del Siro C., Lambiel C. & Ambrosi C., 2021. Schmidt hammer exposure-age dating of periglacial and glacial landforms in the Southern Swiss Alps based on R-value calibration using historical data. Geographica Helvetica, 76(4), 401–423. https://doi.org/10.5194/gh-76-401-2021.
Schimmelpfennig I., Schaefer J., Lamp J., Godard V., Schwartz R., Bard E., Tuna T., Akçar N., Schlüchter C., Zimmerman S. & Aster T., 2021. Glacier response to Holocene warmth inferred from in situ 10Be and 14C bedrock analyses in Steingletscher’s forefield (central Swiss Alps). Climate of the Past, 18(1), 23–44. https://doi.org/10.5194/cp-18-23-2022.
Schindelwig I., Akçar N., Kubik P.W. & Schlüchter Ch., 2012. Lateglacial and early Holocene dynamics of adjacent valley glaciers in the Western Swiss Alps. Journal of Quaternary Science, 27(1), 114–124. https://doi.org/10.1002/jqs.1523.
Scotti R., Brardinoni F., Crosta G.B., Cola G. & Mair V., 2017. Time constraints for post-LGM landscape response to deglacia-tion in Val Viola, Central Italian Alps. Quaternary Science Reviews, 177, 10–33. https://doi.org/10.1016/j.quascirev.2017.10.011.
Shakesby R.A., Matthews J.A. & Owen G., 2006. The Schmidt hammer as a relative-age dating tool and its potential for cali-brated-age dating in Holocene glaciated environments. Quaternary Science Reviews, 25(21–22), 2846–2867. https://doi.org/10.1016/j.quascirev.2006.07.011.
Shakesby R.A., Matthews J.A., Karlén W. & Los S.O., 2011. The Schmidt hammer as a Holocene calibrated-age dating tech-nique: testing the form of the R-value-age relationship and defining the predicted-age errors. The Holocene, 21(4), 615–628. https://doi.org/10.1177/0959683610391322.
Solomina O.N., Bradley R.S., Hodgson D.A., Ivy-Ochs S., Jomelli V., Mackintosh A.N., Nesje A., Owen L.A., Wanner H., Wiles G.C. & Young N.E., 2015. Holocene glacier fluctuations. Quaternary Science Reviews, 111, 9–34. https://doi.org/10.1016/j.quascirev.2014.11.018.
Steck A., 2011. 1269 Aletschgletscher mit Teil von 1249 Finsteraarhorn: Erläuterungen. Geologischer Atlas der Schweiz 1:25 000, 131, Schweizerische Eidgenossenschaft Bundesamt für Landestopografie Swisstopo.
Sumner P. & Nel W., 2002. The effect of rockmoisture on Schmidt hammer rebound: Tests on rock samples from Marion Island and South Africa. Earth Surface Processes and Landforms, 27(10), 1137–1142. https://doi.org/10.1002/esp.402.
Tomkins M.D., Dortch J.M. & Hughes P.D., 2016. Schmidt Hammer exposure dating (SHED): Establishment and implications for the retreat of the last British Ice Sheet. Quaternary Geochronology, 33, 46–60. https://doi.org/10.1016/j.quageo.2016.02.002.
Tomkins M.D., Huck J.J., Dortch J.M., Hughes P.D., Kirbride M.P. & Barr I.D., 2018a. Schmidt Hammer exposure dating (SHED): Calibration procedures, new exposure age data and an online calculator. Quaternary Geochronology, 44, 55–62. https://doi.org/10.1016/j.quageo.2017.12.003.
Tomkins M.D., Dortch J.M., Hughes P.D., Huck J.J., Stimson A.G., Delmas M., Calvet M. & Pallàs R., 2018b. Rapid age as-sessment of glacial landforms in the Pyrenees using Schmidt hammer exposure dating (SHED). Quaternary Research, 90(1), 26–37. https://doi.org/10.1017/qua.2018.12.
Viles H., Goudie A., Grab S. & Lalley J., 2011. The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: A comparative analysis. Earth Surface Processes and Landforms, 36(3), 320–333. https://doi.org/10.1002/esp.2040.
Wentworth Ch.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 377–392. http://www.jstor.org/stable/30063207.
Winkler S., 2005. The Schmidt hammer as a relative‐age dating technique: potential and limitations of its application on Holo-cene moraines in Mt Cook National Park, Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics, 48(1), 105–116. https://doi.org/10.1080/00288306.2005.9515102.
Winkler S., 2009. First attempt to combine terrestrial cosmogenic nuclide (10Be) and Schmidt hammer relative-age dating: Strauchon Glacier, Southern Alps, New Zealand. Central European Journal of Geosciences, 1(3), 274–290. https://doi.org/10.2478/v10085-009-0026-3.
Winkler S., Matthews J.A., Haselberger S., Hill J.L., Mourne R.W., Owen G. & Wilson P., 2020. Schmidt-hammer exposure-age dating (SHD) of sorted stripes on Juvflye, Jotunheimen (central South Norway): Morphodynamic and palaeoclimatic impli-cations. Geomorphology, 353, 107014. https://doi.org/10.1016/j.geomorph.2019.107014.
Zasadni J., 2007. The Little Ice Age in the Alps: its record in glacial deposits and rock glacier formation. Studia Geomorpholog-ica Carpatho-Balcanica, 41, 117–131.
Zasadni J. & Kłapyta P., 2016. From valley to marginal glaciation in alpine-type relief: Lateglacial glacier advances in the Pięć Stawów Polskich/Roztoka Valley, High Tatra Mountains, Poland. Geomorphology, 253, 406–424. https://doi.org/10.1016/j.geomorph.2015.10.032.
Zasadni J., Kłapyta P., Broś E., Ivy-Ochs S., Świąder A., Christl M. & Balážovičová L., 2020. Latest Pleistocene glacier ad-vances and post-Younger Dryas rock glacier stabilization in the Mt. Kriváň group, High Tatra Mountains, Slovakia. Geo-morphology, 358, 107093. https://doi.org/10.1016/j.geomorph.2020.107093.
Zingg T., 1935. Beitrag zur Schotteranalyse. Eidgenössische Technische Hochschule in Zürich, Zürich [PhD thesis].
Zoller H., 1958. Pollenanalytische Untersuchungen im unteren Misox mit den ersten Radiokarbondatierungen in der Südschweiz. Veröffentlichungen des Geobotanischen Institutes Rübel in Zürich, 34, 166–175.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)
