Radiological analysis of food products of forest origin in the pollution zone of the Kamin-Kashyrskyi district of the Volyn region of Ukraine
DOI:
https://doi.org/10.7494/geol.2024.50.3.307Keywords:
radiological pollution, 137Cs, 90Sr, mushrooms, wild berriesAbstract
The problem of the radiological contamination of food products from secondary forest use remains relevant and requires targeted preventive measures, with the contamination being the result of the Chornobyl nuclear power plant disaster. The research was conducted with the aim of comprehensively monitoring the content of radionuclide 137Cs in forest products (Wild Bilberry (Vaccinium myrtillus), Blackberries (Rubus L.), Wild Strawberries (Fragaria vesca L.), Raspberry (Rubus idaeus L.), together with Cantharellus cibarius, Boletus edulis, and Leccinum scabrum mushrooms) of the zone of radioactive contamination of the Kamin-Kashyrskyi district of the Volyn region. Samples were collected in 2020–2022. The total number of samples was 729 dried and 975 fresh mushrooms and berries samples for 2020, 1,154 dried and 886 fresh samples for 2021, and 870 dried and 896 fresh samples for 2022. The results of research indicate that in the specified territory, and at the present moment, forest products are to be found with a significant content of the radionuclide 137Cs, including those exceeding the permissible levels. There is, therefore, a threat of further internal exposure of the local population via access to procurement points of contaminated products and restaurants. In connection with the detection of these pollutants in forest products in the studied area, further expansion of specialized radioecological monitoring studies and strengthening of radiological control remains relevant.
Downloads
References
Anspaugh L.R., Shagalova E.D., Napier B.A. & Hilley E., 2002. Movement of radionuclides in terrestrial ecosystems by physical processes. Health Physics, 82(5), 669–679. https://doi.org/10.1097/00004032-200205000-00013.
Anspaugh L.R., Napier B.A., Apostoaei A.I. & Till J.E., 2022. A methodology for calculation of internal dose following exposure to radioactive fallout from the detonation of a nuclear fission device. Health Physics, 122(1), 84–124. https://doi.org/10.1097/hp.0000000000001503.
Arena C., Vitale L. & Virzo De Santo A., 2014. Growth alteration and leaf biochemical responses in phaseolus vulgaris exposed to different doses of ionising radiation. Plant Biology, 16(s1), 194–202. https://doi.org/10.1111/plb.12076.
Bayan B., 2018. Impacts of dairy cooperatives in smallholder dairy production systems: A case study in Assam. Agricultural Economics Research Review, 31(1), 87–94. https://doi.org/10.5958/0974-0279.2018.00008.3.
Bondarkov M.D., Gaschak S.P., Oskolkov B.Y., Maksimenko A.M., Farfán E.B., Jannik G.T., LaBone E.D., 2011. Overview of the cooperation between the Chernobyl Center’s International Radioecology Laboratory in Slavutych, Ukraine, and U.S. research centers between 2000 and 2010. Health Physics, 101(4), 338–348. https://doi.org/10.1097/hp.0b013e318220784a.
Boyko P., Kurtak B., Zinchuk M., Pundiak T., Panashchuk I., Gnasyuk R., Dudkovska N., Thiss M. & Komovych L., 2017. Characteristics of long-term radionuclides of 137Cs and 90Sr of foods, products of animals and plants in the territory of the Volyn region after the period 1991–2016. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 19(78), 13–17. https://doi.org/10.15421/nvlvet7803.
Davydova I., Korbut M., Kreitseva H., Panasiuk A., Melnyk V., 2019. Vertical distribution of 137Cs in forest soil after the ground fires. Ukrainian Journal of Ecology, 9(3), 231–240. https://doi.org/10.15421/2019_84.
Duong V.H., Pham B.N., Hoang T.H., Nguyen T.Q., Tran N.T. & Le V.D., 2021. Assessment of 232Th, 226Ra, 137Cs, and 40K concentrations and annual effective dose due to the consumption of Vietnamese fresh milk. Journal of Radioanalytical and Nuclear Chemistry, 328, 1399–1404. https://doi.org/10.1007/s10967-021-07643-w.
Fesenko S.V., Alexakhin R.M., Balonov M.I., Bogdevich I.M., Howard B.J., Kashparov V.A., Sanzharova N.I., Panov A.V., Voigt G. & Zhuchenka Yu.M., 2006. Twenty years’ application of agricultural countermeasures following the Chernobyl accident: Lessons learned. Journal of Radiological Protection, 26(4), 351–359. https://doi.org/10.1088/0952-4746/26/4/r01.
Grodzynska G.A., 2017. Radionuklide contamination of macromycetes. Visnyk of the National Academy of Sciences of Ukraine, 6, 61–76. https://doi.org/10.15407/visn2017.06.061.
Handl J., Beltz D., Botsch W., Harb S., Jakob D., Michel R. & Romantschuk L.D., 2003. Evaluation of radioactive exposure from 137Cs in contaminated areas of Northern Ukraine. Health Physics, 84(4), 502–517. https://doi.org/10.1097/00004032-200304000-00010.
Harada K.H., Fujii Y., Adachi A., Tsukidate A., Asai F. & Koizumi A., 2013. Dietary intake of radiocesium in adult residents in Fukushima prefecture and neighboring regions after the Fukushima nuclear power plant accident: 24-h food-duplicate survey in December 2011. Environmental Science & Technology, 47(6), 2520–2526. https://doi.org/10.1021/es304128t.
Hashimoto S., Ugawa S., Nanko K. & Shizuma K., 2012. The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Scientific Reports, 2(1), 416. https://doi.org/10.1038/srep00416.
Нromyk O. & Ilyina O., 2016. Radionuclides and heavy metals in the soils and waters of the territory of the radioactive contamination of Volyn region. Scientific Bulletin of Lesya Ukrainka East European National University. Geographical Sciences, 15(340), 30–38.
Hromyk O. & Ilyina O., 2017. Radionuclides and heavy metals in soils and waters on the territory of radioactive contamination in Volyn region. Natural and Technical Sciences, 14(132), 17–19.
Hromyk O., Ilyin L, Grygus I., Korotun S, Ilyina O. & Zukow W., 2020. Radiation monitoring of agricultural soils of the Volyn region in Ukraine. Roczniki Państwowego Zakładu Higieny, 71(4), 377–383. https://doi.org/10.32394/rpzh.2020.0139.
Ilyin L.V. & Hromyk O.M., 2016. Radiation study of lake complexes of the Volyn region. [in:] Contemporary environmental problems of Ukrainian Polissia and adjacent territories (to the 30th anniversary of the accident at the Chernobyl Nuclear Power Plant): Proceedings of the International Scientific and Practical Conference (April 20–22, 2016; Nizhyn), Nauka-Servis, Nizhin, 180–182 [Ільїн Л.В., Громик О.М., 2016. Радіаційне дослідження озерних комплексів Волинської області. [в:] Сучасні екологічні проблеми Українського Полісся тасуміжних територій (до 30-ої річниці аварії на ЧАЕС): Матеріали Міжнародної науково-практичної конференції (20-22 квітня 2016 року; Ніжин), Наука-Сервіс, Ніжин, 180–182].
Koarashi J., Atarashi-Andoh M., Matsunaga T., Sato T., Nagao S. & Nagai H., 2014. Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocesium on forest floor driven by biologically mediated processes. Scientific Reports, 4(1), 6853. https://doi.org/10.1038/srep06853.
Koarashi J., Nishizawa Y. & Atarashi-Andoh M., 2016. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima Nuclear Accident. Scientific Reports, 6(1), 38591. https://doi.org/10.1038/srep38591.
Koarashi J., Nishizawa Y., Miyake K., Takata D., Atarashi-Andoh M. & Nagao S., 2020. Effectiveness of decontamination by litter removal in Japanese forest ecosystems affected by the Fukushima nuclear accident. Scientific Reports, 10(1), 6614. https://doi.org/10.1038/s41598-020-63520-8.
Mamyrbayeva A.S., Karpenko E.V., Kovyazina J.A., Saparbekova S.Z., Sharipova B.U. & Kurakbayev Q.S., 2020. The transfer of 241Am and 137Cs to the tissues of broilers’ organs. PLoS ONE, 15(7), e0235109. https://doi.org/10.1371/journal.pone.0235109.
Mandi K., Bayan B., Kumari S. & Singh M.P., 2022. Impact of Jharkhand State Cooperative Milk Producers’ Federation on socio economic status of dairy farmers. Indian Journal of Extension Education, 58(2), 47–52. https://doi.org/10.48165/ijee.2022.58209.
Merlenko I. & Zinchuk M. (eds.), 2010. Recommendations for conducting agricultural production in conditions of radiation and toxicological pollution in the Volyn region. Lutsk [Мерленкo І.М., Зінчук М.І. (ред.), 2010. Рекомендації для ведення сільськогосподарського виробництва в умовах радіологічного та токсикологічного забруднення у Волинській області. Луцьк].
Merz S., Shozugawa K. & Steinhauser G., 2015. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident. Environmental Science & Technology, 49(5), 2875–2885. https://doi.org/10.1021/es5057648.
Ministry of Environmental Protection and Natural Resources of Ukraine, 2022. Radiological Protection of the Population and Environmental Remediation of the Territory Affected by Radioactive Contamination. Decree No. 96 of 9.02.2022 [Міністерство захисту довкілля та природних ресурсів України, 2022. Радіологічний захист населення та екологічне оздоровлення території, що зазнала радіоактивного забруднення. Наказ № 96 від 9.02.2022]. https://mepr.gov.ua/radiologichnyj-zahyst-naselennya-ta-ekologichne-ozdorovlennya-terytoriyi-shho-zaznala-radioaktyvnogo-zabrudnennya/.
Mozaffarian D., Hao T., Rimm E.B., Willett W.C. & Hu F.B., 2011. Changes in diet and lifestyle and long-term weight gain in women and men. New England Journal of Medicine, 364(25), 2392–2404. https://doi.org/10.1056/nejmoa1014296.
Nakashima K., Orita M., Fukuda N., Taira Y., Hayashida N., Matsuda N. & Takamura N., 2015. Radiocesium concentrations in wild mushrooms collected in Kawauchi Village after the accident at the Fukushima Daiichi Nuclear Power Plant. PeerJ, 3, e1427. https://doi.org/10.7717/peerj.1427.
Pryster B.S., 2005. Radioecological regularities of the dynamics of the radiation situation in the Ukrainian agriculture after the Chernobyl accident. Agroecological Journal, 3, 13–21 [Пристер Б.С., 2005. Радиоэкологические закономерности динамики радиационной обстановки в сельском хозяйстве Украины после аварии на ЧАЕС. Агроекологічний журнал,3, 13–21].
Razanov S., Shandala N., Lysikov A., Miroshnichenko V. & Borkowska O., 2023. Assessment of Phytoremediation of 137Cs Contaminated Soils during the Cultivation of Nectar-Pollinating Plants. Journal of Ecological Engineering, 24(5). https://doi.org/10.12911/22998993/161767.
Real A., Sundell-Bergman S., Knowles J.F., Woodhead D.S. & Zinger I., 2004. Effects of ionising radiation exposure on plants, fish and mammals: Relevant data for environmental radiation protection. Journal of Radiological Protection, 24(4A), A123. https://doi.org/10.1088/0952-4746/24/4a/008.
Regional report on the state of the environment [Регіональна доповідь про стан навколишнього природного середовища у волинській області за 2022 рік], 2022. https://voladm.gov.ua/article/regionalna-dopovid-pro-stan-dovkillya/.
Regional report on the state of the environment [Регіональна доповідь про стан навколишнього природного середовища у волинській області за 2023 рік], 2023. https://voladm.gov.ua/article/regionalna-dopovid-pro-stan-dovkillya/.
Romanchuk L.D., 2012. Radiological assessment of the dose load on the human body from food products of forest origin. Collection of scientific papers of Uman National University of Horticulture, 81(1), 153–160 [Романчук Л.Д., 2012. Радіологічна оцінка дозового навантаження на організм людей продуктами харчування лісового походження. Збірник наукових праць Уманського національного університету садівництва, 81(1), 153–160].
Sekitani Y., Hayashi T., Saito S., Tsuruoka C., Matsushita N., Yamashita S. & Shimura H., 2010. Evaluation of 137Cs body burden in inhabitants of Bryansk Oblast, Russian Federation, where a high incidence of thyroid cancer was observed after the accident at the Chernobyl Nuclear Power Plant. Radiation Protection Dosimetry, 141(1), 36–42. https://doi.org/10.1093/rpd/ncq137.
Shynkarenko V.K., Andrienko T.I., Borbysh P.I., Osinnii V.P. & Yanytskyy O.P., 2021. Radionuclides contamination of leaves of woody plants growing within the ChNPP cooling pond. Yaderna Fyizika Ta Energetika, 157–166. https://doi.org/10.15407/jnpae2021.02.157.
Smith M.L., Taylor H.W. & Sharma H., 1993. Comparison of the post-Chernobyl 137Cs contamination of mushrooms from Eastern Europe, Sweden, and North America. Applied and Environmental Microbiology, 59(1), 134–139. https://doi.org/10.1128/aem.59.1.134-139.1993.
Stepanenko V., Yaskova E., Orlov M., Kryukova I., Matveenko E. & Tsyb A.F., 2008. Internal irradiation of the thyroid gland in residents of Kaluga Oblast from results of 131I content measurements performed in May 1986. Atomic Energy, 105(2), 124–132. https://doi.org/10.1007/s10512-008-9075-0.
Thiessen K.M., Napier B.A., Apostoaei A.I., Bertelli L., Egidi P.V., Erkin V., …, Till J.E., 2022. Parameter values for estimation of internal doses from ingestion of radioactive fallout from nuclear detonations. Health Physics, 122(1), 236–268. https://doi.org/10.1097/hp.0000000000001493.
Tsubokura M., Kato S., Nomura S., Gilmour S., Nihei M., Sakuma Y., …, Hayano R., 2014. Reduction of high levels of internal radio-contamination by dietary intervention in residents of areas affected by the Fukushima Daiichi nuclear plant disaster: A case series. PLoS ONE, 9(6), 0100302. https://doi.org/10.1371/journal.pone.0100302.
Uwatse O.B., Ekong G.B. & Etuk E.S., 2015. Measurement of natural and artificial radioactivity in infant powdered milk and estimation of the corresponding annual effective dose. Environmental Engineering Science, 32(10), 838–846. https://doi.org/10.1089/ees.2015.0114.
Volosovets O.P., Strichkun O.V., Makhinchuk D.D. & Zhukova I.O., 2021. Anemia in children in Ukraine: A 24-year retrospective analysis of morbidity and prevalence. World of Medicine and Biology, 17(3), 43–48. https://doi.org/10.26724/2079-8334-2021-3-77-43-48.
Yablokov A. & Nesterenko V., 2009. 1. Chernobyl contamination through time and space. Annals of the New York Academy of Sciences, 1181(1), 5. https://doi.org/10.1111/j.1749-6632.2009.04821.x.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)