The geology of the deepest Cenozoic lignite-rich grabens in Poland with particular reference to their lithostratigraphy: a comparative study
DOI:
https://doi.org/10.7494/geol.2024.50.2.131Keywords:
Paleogene–Neogene, tectonic depressions, lignite seams, lithology, lithostratigraphic units, lithostratigraphic correlationAbstract
The thickest lignite seams in Poland are located in tectonic depressions such as the Kleszczów, Złoczew, and Lubstów grabens, as well as the Zittau (Żytawa) Basin. Their depth ranges from 220 m to 550 m, while the maximum lignite thickness ranges from approximately 90 m to over 250 m. The areas selected for this study include two Miocene lignite seams that have been exploited or prepared for mining, i.e. the third Ścinawa lignite seam (ŚLS-3) and the second Lusatian lignite seam (LLS-2). Currently, more than 95% of the Polish lignite production comes from the exploitation of these seams. Both lignite seams are accompanied by siliciclastic sediments that are lithologically very diverse. The lignite-rich grabens examined in this study form isolated structures and their individual geology is complex. Hence, apart from the Lubstów Graben, local lithostratigraphy is applied for each case, an approach that makes it difficult to compare the lithological units and their stratigraphic position with the Paleogene and Neogene lithostratigraphy used for the Polish Lowlands area. Therefore, it seems appropriate to present an outline of the geology of the Polish regions bearing most of the lignite seams, including a brief overview of their lithological and palaeotectonic characteristics. However, it is first necessary to clarify and compare the lithostratigraphy of the Cenozoic sediments that fill the studied grabens.
Downloads
References
Bielowicz B., 2016. The suitability of Polish ortho-lignite deposits for clean coal technologies. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 32(4), 109–127. http://doi.org/10.1515/gospo-2016-0034.
Bielowicz B. & Kasiński J.R., 2014. The possibility of underground gasification of lignite from Polish deposits. International Journal of Coal Geology, 131, 304–318. https://doi.org/10.1016/j.coal.2014.06.025.
Burchart J., Kasza L. & Lorenc S., 1988. Fission-track zircon dating of tuffitic intercalations (Tonstein) in the Brown-Coal Mine “Beł-chatów”. Bulletin of the Polish Academy of Sciences, Earth Sciences, 36, 281–286.
Cohen K.M., Finney S.C., Gibbard P.L. & Fan J.-X., 2013 [updated]. The ICS International Chronostratigraphic Chart. Episodes, 36(3), 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002.
Czarnecki L., Frankowski R. & Kuszneruk J., 1992. Syntetyczny profil litostratygraficzny utworów trzeciorzędu złoża Bełchatów [Synthetic lithostratigraphic profile of Tertiary deposits of the Bełchatów deposit]. [in:] Lipiarski I. (red.), Geologia formacji wę-glonośnych Polski: XXIII Sympozjum, Kraków, 12–13 kwietnia 2000: materiały, Wydawnictwo Akademii Górniczo-Hutniczej, Kraków, 18–23.
Dadlez R., Marek S. & Pokorski J. (red. nauk.), 2000. Mapa geologiczna Polski bez utworów kenozoiku, 1 : 1 000 000 [Geological map of Poland without Cainozoic deposits]. Wydawnictwo Kartograficzne Polskiej Agencji Ekologicznej, Warszawa.
Grimm K., Grimm M., Huss M., Jansen F., Prüfert A., Gürs K., Lietzow A., Ritzkowski S., Standke G., Blumenstengel H., Bülow W., Hottenrot M., Doppler G., Heissig K., Reichenbacher B. & Schwerd K., 2002. Tertiary. [in:] German Stratigraphic Commission (ed.), Stratigraphic Table of Germany 2002 (STG 2002). https://www.stratigraphie.de/std2002/download/STD2002_large.pdf.
Gotowała R. & Hałuszczak A., 2002. The Late Alpinie structural development of the Kleszczów Graben (Central Poland) as a result of a reactivation of the pre-existing, regional dislocation. European Geoscience Union, Stephan Mueller Special Publication Series, 1, 137–150. https://doi.org/10.5194/smsps-1-137-2002.
Jarosiński M., Poprawa P. & Ziegler P.A., 2009. Cenozoic dynamic evolution of the Polish Platform. Geological Quarterly, 53(1), 3–26. https://gq.pgi.gov.pl/article/view/7502.
Kasiński J.R., 2000. Atlas geologiczny trzeciorzędowej asocjacji brunatnowęglowej w polskiej części Niecki Żytawskiej: 1 : 50 000 [Geological atlas of the Tertiary lignite-bearing association in the Polish part of the Zittau Basin: 1 : 50,000]. Państwowy Instytut Geologiczny, Warszawa.
Kasiński J.R., 2004. Paleogen i neogen w zapadliskach i rowach tektonicznych [Paleogene and Neogene in tectonic depressions and grabens]. [in:] Peryt T.M. & Piwocki M. (red. nauk.), Stratygrafia. Cz. 3a, Kenozoik, paleogen, neogen, Budowa Geologiczna Polski, 1, Państwowy Instytut Geologiczny, Warszawa, 134–161.
Kasiński J.R. & Słodkowska B., 2016. Factors controlling Cenozoic anthracogenesis in the Polish Lowlands. Geological Quarterly, 60(4), 959–974. https://gq.pgi.gov.pl/article/view/25516/pdf_1301.
Kasiński J.R., Czapowski G. & Piwocki M., 2009. Rola halokinezy w powstawaniu trzeciorzędowych złóż węgla brunatnego na Niżu Polskim [Halokinetic impact on origin of the Tertiary lignite deposits on the Polish Lowlands]. Przegląd Geologiczny, 57(11), 964–975. https://bibliotekanauki.pl/articles/2074651.
Kasiński J.R., Badura J., Pańczyk M., Pécskay Z., Saternus A., Słodkowska B. & Urbański P., 2015. Osady paleogeńskie w polskiej części niecki żytawskiej – nowe światło na problem wieku zapadliska tektonicznego [Paleogene deposits in the Polish part of the Zittau Basin – new light on the age of the tectonic depression]. Biuletyn Państwowego Instytutu Geologicznego, 461, 295–324.
Kley J. & Voigt T., 2008. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36(11), 839–842. https://doi.org/10.1130/G24930A.1.
Krzywiec P., 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough – lateral variations in timing and structural style. Geological Quarterly, 50(1), 151–168. https://gq.pgi.gov.pl/article/view/7403.
Malkovsky M., 1987. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics, 137, 31–42. https://doi.org/10.1016/0040-1951(87)90311-8.
Matl K. & Wagner M., 1987. The occurrence of tuffaceous horizons in the Tertiary of the Polish Lowland and the Carpathian Foredeep. Annales Instituti Geologici Publici Hungarici, 70, 329–335.
Pańczyk M., Nawrocki J., Aleksandrowski P. & Przybylski B., 2023. Three age ranges of Cenozoic basaltic rocks from Lower Silesia (SW Poland) based on 40Ar/39Ar stepheating data. International Journal of Earth Sciences, 112, 725–740. https://doi.org/10.1007/s00531-022-02269-z.
Piwocki M., 1992. Zasięg i korelacja głównych grup trzeciorzędowych pokładów węgla brunatnego na platformowym obszarze Polski [Extent and correlations of main groups of the Tertiary lignite seams on Polish platform area]. Przegląd Geologiczny, 40, 281–286.
Piwocki M. & Ziembińska-Tworzydło M., 1997. Neogene of the Polish Lowlands – lithostratigraphy and pollen-spore zones. Geo-logical Quarterly, 41(1), 21–40. https://gq.pgi.gov.pl/article/view/8268.
Piwocki M., Badura J. & Przybylski B., 2004. Neogen [Neogene]. [in:] Peryt T.M. & Piwocki M. (red. nauk.), Stratygrafia. Cz. 3a, Kenozoik, paleogen, neogen, Budowa Geologiczna Polski, 1, Państwowy Instytut Geologiczny, Warszawa, 71–133.
Sadowska A. & Giża B., 1991. Flora i wiek węgla brunatnego z Pątnowa [The flora and age of brown coal from Pątnów]. Acta Palae-obotanica, 31(1–2), 201–214.
Słodkowska B. & Kasiński J.R., 2016. Paleogen i neogen – czas dynamicznych zmian klimatycznych [Paleogene and Neogene – a time of dynamic changes of climate]. Przegląd Geologiczny, 64(1), 15–25. https://geojournals.pgi.gov.pl/pg/article/view/27321.
Standke G., Rascher J. & Strauss C., 1993. Relative sea-level fluctuations and brown coal formations around the Early-Middle Miocene boundary in the Lusatian Brown Coal District. Geologische Rundschau, 82(2), 295–305. https://doi.org/10.1007/BF00191835.
Urbański P. & Widera M., 2016. Geologia złóż węgla brunatnego w południowo-zachodniej Wielkopolsce [Geology of lignite deposits in the south-western Wielkopolska region]. Przegląd Geologiczny, 64(10), 791–798. https://geojournals.pgi.gov.pl/pg/article/view/27455.
Urbański P. & Widera M., 2020. Is the Złoczew lignite deposit geologically suitable for the first underground gasification installation in Poland? Geologos, 26(2), 113–125. https://doi.org/10.2478/logos-2020-0011.
Vinken R. (compiler), 1988. The Northwest European tertiary basin, results of the International Geological Correlation Programme, Project No. 124. Geologisches Jahrbuch Reihe A, 100, 1–508.
Wagner M., 1984. Ilaste skały kaolinitowe (paratonsteiny) ze złoża węgla brunatnego Bełchatów [Clay kaolinite (paratonstein) rocks from the Bełchatów brown coal deposit]. Kwartalnik Geologiczny, 28(3/4), 701–716. https://gq.pgi.gov.pl/article/view/8634.
Widera M., 2007. Litostratygrafia i paleotektonika kenozoiku podplejstoceńskiego Wielkopolski [Lithostratigraphy and palaeotectonics of the sub-Pleistocene Cenozoic of Wielkopolska]. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań.
Widera M., 2013. Changes of the lignite seam architecture – a case study from Polish lignite deposits. International Journal of Coal Geology, 114, 60–73. https://doi.org/10.1016/j.coal.2013.02.004.
Widera M., 2016a. Characteristics and origin of deformation structures within lignite seams – a case study from Polish opencast mines. Geological Quarterly, 60(1), 181–191. https://doi.org/10.7306/gq.1268.
Widera M., 2016b. Genetic classification of Polish lignite deposits: A review. International Journal of Coal Geology, 158, 107–118. https://doi.org/10.1016/j.coal.2016.03.004.
Widera M., 2021. Geologia polskich złóż węgla brunatnego. Studia i Prace z Geologii, 3, Bogucki Wydawnictwo Naukowe, Poznań.
Widera M., 2024a. Cenozoic tectonic evolution of the main lignite-rich grabens in Poland. Part 1. Tectonic stages. Acta Geologica Po-lonica, 74(1), e2. https://doi.org/10.24425/agp.2023.148021.
Widera M., 2024b. Cenozoic tectonic evolution of the main lignite-rich grabens in Poland. Part 2. Tectonics versus autocompaction and compaction. Acta Geologica Polonica, 74(2), e7. https://doi.org/10.24425/agp.2024.150000.
Widera M. & Kita A., 2007. Paleogene marginal marine sedimentation in central-western Poland. Geological Quarterly, 51(1), 79–90. https://gq.pgi.gov.pl/article/view/7439.
Widera M., Ćwikliński W. & Karman R., 2008. Cenozoic tectonic evolution of the Poznań-Oleśnica Fault Zone, central-western Poland. Acta Geologica Polonica, 58(4), 455–471. https://geojournals.pgi.gov.pl/agp/article/view/9947.
Widera M. & Hałuszczak A., 2011. Stages of the Cenozoic tectonics in central Poland: examples from selected grabens. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162(2), 203–215. https://doi.org/10.1127/1860-1804/2011/0162-0203.
Widera M., Bechtel A., Chomiak L., Maciaszek P., Słodkowska B., Wachocki R., Worobiec E., Worobiec G. & Zieliński T., 2021. Palaeoenvironmental reconstruction of the Konin Basin (central Poland) during lignite accumulation linked to the Mid-Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 568, 110307. https://doi.org/10.1016/j.palaeo.2021.110307.
Widera M., Urbański P., Mazurek S. & Naworyta W., 2024. Polish lignite resources, mining and energy industries – what is next? Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 40 [in press].
Ziegler P.A. & Dèzes P., 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change, 58(1–4), 237–269. https://doi.org/10.1016/j.gloplacha.2006.12.004.
Żelaźniewicz A., Aleksandrowski P., Buła Z., Karnkowski P.H., Konon A., Oszczypko N., Ślączka A., Żaba J. & Żytko K., 2011. Regionalizacja tektoniczna Polski. Komitet Nauk Geologicznych – Polska Akademia Nauk, Wrocław.
Downloads
Published
How to Cite
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)