Mapping a fracture network formed by hydraulic fracturing in a shale gas reservoir

Authors

  • Elżbieta Węglińska AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of Geoinformatics and Applied Computer Science, Krakow, Poland https://orcid.org/0000-0003-0645-6570
  • Andrzej Leśniak AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of Geoinformatics and Applied Computer Science, Krakow, Poland https://orcid.org/0000-0002-9442-0799
  • Andrzej Pasternacki AGH University of Krakow, Poland, Faculty of Geology, Geophysics and Environmental Protection, Department of Energy Resources, Krakow, Poland https://orcid.org/0000-0002-0934-0277
  • Paweł Wandycz AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of Energy Resources, Krakow, Poland https://orcid.org/0000-0002-1145-0184

DOI:

https://doi.org/10.7494/geol.2024.50.3.213

Keywords:

fracture network, shale gas, microseismicity, collapsing, HDBSCAN, Baltic Basin

Abstract

Microseismic monitoring is an important technique that can be used to identify fractures in rock mass. The aim of this article is to identify, on the basis of the location of microseismic events, structures formed by hydraulic fracturing in the Wysin-2H/2Hbis horizontal well from the Baltic Basin in northern Poland, and to compare the patterns of these structures with the direction of regional stresses. The authors proposed a novel multi-step workflow for finding these structures. To be able to delineate the structures from microseismic events with greater accuracy, a collapsing algorithm was used. Then, based on the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) clustering algorithm and the elongation coefficient of each cluster, probable fissures were identified and compared against the maximum horizontal stress direction. In addition, based on the 3D seismic data from the Wysin and the calculated geomechanical parameters in the monitoring well, the probability classes of brittleness indices in the LMR (λρ-μρ) parameter domain were determined. A comparative analysis was performed between the two variants of microseismic event location (before and after the collapsing procedure) and the estimated probability of a given class of brittleness index. The comparison of the event location with the 3D seismic data was used to validate the results before and after collapsing due to the high resolution of the seismic method. It is shown that the collapsed events appeared in more rigid regions, where more energy release is expected.

Downloads

Download data is not yet available.

References

Ankerst M., Breunig M.M., Kriegel H.P. & Sander J., 1999. OPTICS: Ordering points to identify the clustering structure. [in:] Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data: SIGMOD ‘99, Philadelphia, PA, USA, June 1–3, 1999: Vol. 28, Association for Computing Machinery, New York, 49–60. https://doi.org/10.1145/304182.304187.

Bell J.S. & Gough D.I., 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells. Earth and Planetary Science Letters, 45(2), 475–482. https://doi.org/10.1016/0012-821X(79)90146-8.

Boyd N.K., Cardenas M. & Galarraga M., 2010. Improved reservoir characterization using prestack analyses, Eden Yuturi field, Ecuador. [in:] SEG Technical Program Expanded Abstracts 2010, Society of Exploration Geophysicists, 2265–2269. https://doi.org/10.1190/1.3513301.

Campello R.J.G.B., Moulavi D. & Sander J., 2013. Density-based clustering based on hierarchical density estimates. in advances in knowledge discovery and data mining. [in:] Pei J., Tseng V.S., Cao L., Motoda H. & Xu G. (eds.), Advances in Knowledge Discovery and Data Mining: PAKDD 2013, Lecture Notes in Computer Science, 7819, Springer, Berlin, Heidel-berg, 160–172. https://doi.org/10.1007/978-3-642-37456-2_14.

Ester M., Kriegel H.P., Sander J. & Xu X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. [in:] Simoudis E., Han J. & Fayyad U. (eds.), KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, Portland, Oregon, 226–231.

Evans K.F., Moriya H., Niitsuma H., Jones R.H., Phillips W.S., Genter A., Sausse J., Jung R. & Baria R., 2005. Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at Soultz HDR site. Geophysical Journal International, 160(1), 388–412. https://doi.org/10.1111/j.1365-246X.2004.02474.x.

Goodway B., Chen T. & Downton J., 1997. Improved AVO fluid detection and lithology discrimination using Lamé petrophys-ical parameters: “λρ”, “μρ”, and “λ/μ fluid stack”: from P and S inversions. [in:] SEG Technical Program Expanded Ab-stracts 1997, Society of Exploration Geophysicists, 183–186. https://doi.org/10.1190/1.1885795.

Jones R.H. & Stewart R.C., 1997. A method for determining significant structures in a cloud of earthquakes. Journal of Geo-physical Research: Solid Earth, 102(B4), 8245–8254. https://doi.org/10.1029/96JB03739.

Kriegel H.P., Kröger P., Sander J. & Zimek A., 2011. Density-based clustering. WIREs Data Mining and Knowledge Discovery, 1(3), 231–240. https://doi.org/10.1002/widm.30.

Leśniak A., Śledź E. & Mirek K., 2020. Detailed recognition of seismogenic structures activated during underground coal mining: A case study from Bobrek Mine, Poland. Energies, 13(18), 4622. https://doi.org/10.3390/en13184622.

Lopez-Comino J.A., Cesca S., Jaroslawski J., Montcoudiol N., Heimann S., Dahm T., Lasocki S., Gunning A., Capuano P. & Ellsworth W.L., 2018. Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland. Scientific Reports, 8, 8653. https://doi.org/10.1038/s41598-018-26970-9.

Ma X.Q., 2002. Simultaneous inversion of prestack seismic data for rock properties using simulated annealing. Geophysics, 67, 1877–1885. https://doi.org/10.1190/1.1527087.

Maxwell S.C., 2013. Unintentional seismicity induced by hydraulic fracturing. CSEG Recorder, 38(08), 40–49.

Maxwell S.C., 2014. Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservo-irs. Distinguished Instructor Series, 17, Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560803164.

Maxwell S.C., Mack M., Zhang F., Chorney D., Goodfellow S.D. & Grob M., 2015a. Differentiating wet and dry microseismic events induced during hydraulic fracturing. [in:], SPE Unconventional Resources Technology Conference 2015: San Anto-nio, Texas, USA, 20–22 July 2015, https://doi.org/10.15530/urtec-2015-2154344.

Maxwell S.C., Chorney D. & Goodfellow S.D. 2015b. Microseismic geomechanics of hydraulic-fracture networks: Insights into mechanisms of microseismic sources. The Leading Edge, 34(8), 904–910. https://doi.org/10.1190/tle34080904.1.

Pasternacki A., 2017. Ocena efektywności procesu szczelinowania hydraulicznego w eksploatacji gazu ziemnego z łupków ila-stych na podstawie badań mikrosejsmicznych [Appraisal of hydraulic fracturing effectiveness in the shale gas exploration based on microseismic monitoring]. Akademia Górniczo-Hutnicza, Kraków [PhD thesis, unpublished].

Pendrel J. & Dickson T., 2003. Simultaneous AVO inversion to P impedance and Vp/Vs. [in:] CSEG Annual Meeting Abstracts 2003, Canadian Society of Petroleum Geologists, Calgary, 417S0131. https://old.cseg.ca/assets/files/resources/abstracts/2003/417S0131.pdf.

Perez R., 2013. Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett Shale. [in:] SEG Technical Program Expanded Abstracts 2013, University of Oklahoma, Oklahoma, 2258–2263. https://doi.org/10.1190/segam2013-0006.1.

Perez R. & Marfurt K., 2013. Calibration of brittleness to elastic rock properties via mineralogy logs in unconventional reser-voirs [conference poster]. AAPG International Conference and Exhibition. https://www.searchanddiscovery.com/documents/2013/41237perez/ndx_perez.pdf.

Poprawa P., 2010. Potencjał występowania złóż gazu ziemnego w łupkach dolnego paleozoiku w basenie bałtyckim i lubelsko-podlaskim [Shale gas potential of the Lower Palaeozoic complex in the Baltic and Lublin-Podlasie basins]. Prze-gląd Geologiczny, 58(3), 226–249.

U.S. Energy Information Administration (EIA), 2013. Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States. U.S. Department of Energy, Washington. https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf [access: 18.04.2024].

Veeken P.C.H., 2007. Seismic Stratigraphy, Basin Analysis and Reservoir Characterisation. Elsevier, Amsterdam.

Wandycz P., 2022. Wyznaczenie współczynnika dobroci Q na podstawie zdarzeń mikrosejsmicznych indukowanych podczas procesu szczelinowania hydraulicznego oraz ocena możliwości jego wykorzystania w przetwarzaniu danych mikrosejsmicz-nych [Determination of the quality factor Q from microseismic events induced during the hydraulic fracturing process and evaluation of its applicability in microseismic data processing]. Akademia Górniczo-Hutnicza, Kraków [PhD thesis, unpublished].

Wandycz P., Święch L., Eisner L., Pasternacki A., Wcisło M. & Maćkowski T., 2019. Estimation of the quality factor based on the microseismicity recordings from Northern Poland. Acta Geophysica, 67, 2005–2014. https://doi.org/10.1007/s11600-019-00362-7.

Węglińska E. & Leśniak A., 2021. Induced seismicity and detailed fracture mapping as tools for evaluating HDR Reservoir Volume. Energies, 14(9), 2593. https://doi.org/10.3390/en14092593.

Węglińska E. & Leśniak A., 2024. A novel approach to identifying seismogenic structures and estimating reservoir volume based on synthetic cloud of seismicity induced by hydraulic fracturing. Acta Geodaetica et Geophysica. https://doi.org/10.1007/s40328-024-00442-1.

Williams-Stroud S. & Billingsley R.L., 2010. Techniques to estimate fracture effectiveness when mapping low-magnitude mi-croseismicity. [in:] SEG Technical Program Expanded Abstracts 2010, Society of Exploration Geophysicists, Houston, 2075–2079. https://doi.org/10.1190/1.3513253.

Zaręba M. & Danek T., 2018. VSP polarization angles determination: Wysin-1 processing case study. Acta Geophysica, 66, 1047–1062. https://doi.org/10.1007/s11600-018-0200-8.

Zaręba M., Danek T. & Stefaniuk M., 2021. P-wave-only inversion of challenging walkaway VSP data for detailed estimation of local anisotropy and reservoir parameters: A case study of seismic processing in Northern Poland. Energies, 14(8), 2061. https://doi.org/10.3390/en14082061.

Zhou C., Zhang M., Li Y., Lu J. & Chen J., 2019. Influence of particle shape on aggregate mixture’s performance: DEM results. Road Materials and Pavement Design, 20(2), 399–413. https://doi.org/10.1080/14680629.2017.1396236.

Zoback M.D., 2010. Reservoir Geomechanics. Cambridge University Press, Cambridge.

Downloads

Published

2024-06-21

How to Cite

Węglińska, E., Leśniak, A., Pasternacki, A., & Wandycz, P. (2024). Mapping a fracture network formed by hydraulic fracturing in a shale gas reservoir. Geology, Geophysics and Environment, 50(3), 213–230. https://doi.org/10.7494/geol.2024.50.3.213

Issue

Section

Articles

Most read articles by the same author(s)