Hydrochemical aspects of water exchange through the bottom of headwater stream in suburban zone on the example of the Malina watercourse in Zgierz (Central Poland)
DOI:
https://doi.org/10.7494/geol.2024.50.3.231Keywords:
headwater stream, hyporheic zone, nutrients, suburban area, vertical hydraulic gradientAbstract
Among the many factors determining the quality of river waters, the influence of the hyporheic zone (HZ) is gaining in importance. Watercourses that exist in the higher parts of catchments are relatively steep and shallow, and the topography of their valleys activate hyporheic flow. The main goal of this work is to assess the impact of the HZ on the hydrochemical state of the head watercourse of the Malina in the suburbs of the city of Zgierz with the focus on biogenic compounds. The riverbed of this stream was researched across two distinct stretches: erosive and accumulative, which differ in the conditions for the hyporheic zone’s interaction with the riverbed. The nutrients are delivered to the stream mainly in the erosive stretch and are related to the inflow of nutrient-rich groundwater from the urbanised catchment. The pollutants transported down by the stream are then delivered to the HZ in the accumulative stretch, where nitrates are denitrified and phosphates are deposited with the suspension. Ammonium nitrogen, in turn, is introduced into the stream from the HZ as a result of either the process of ammonification of organic matter deposited in sediments or inflow with polluted groundwater. The results indicate that the winter season is the most important period in shaping the interaction of river waters with the underlying hyporheic zone, in which the causal side of the relationship should be associated with the subchannel environment, and the effects are recorded in the river waters.
Downloads
References
Arnon S., Yanuka K. & Nejidat A., 2013. Impact of overlying water velocity on ammonium uptake by benthic biofilms. Hydrological Processes, 27(4), 570–578. https://doi.org/10.1002/hyp.9239.
Boano F., Harvey J.W., Marion A., Packman A.I., Revelli R., Ridolfi L. & Wörman A., 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603–679. https://doi.org/10.1002/2012RG000417.
Brogowski Z. & Czerwiński Z., 1973. Materiały do ćwiczeń z gleboznawstwa. Cz. 2: Ćwiczenia laboratoryjne. Dział Wydawnictw AR, Warszawa.
Cirmo Ch.P. & McDonnell J.J., 1997. Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate-forested catchments: A review. Journal of Hydrology, 199(1–2), 88–120. https://doi.org/10.1016/S0022-1694(96)03286-6.
Gajda N., 2021. Zanieczyszczenie biogenami rzeki Malinki w Zgierzu powyżej zbiorników rekreacyjnych [Biogens pollution of the Malina River in Zgierz above recreational retention reservoirs]. Uniwersytet Łódzki, Łódź [Bachelor’s degree thesis, unpublished].
Gooseff M.N., 2010. Defining hyporheic zones – advancing our conceptual and operational definitions of where stream water and groundwater meet. Geography Compass, 4(8), 945–955. https://doi.org/10.1111/j.1749-8198.2010.00364.x.
Gooseff M.N., Anderson J.K., Wondzell S.M., La Nier J. & Haggerty R., 2006. A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrological Processes, 20(11), 2443–2457. https://doi.org/10.1002/hyp.6349.
Gordon R.P., Lautz L.K. & Daniluk T.L., 2013. Spatial patterns of hyporheic exchange and biogeochemical cycling around cross-vane restoration structures: Implications for stream restoration design. Water Resources Research, 49(4), 2040–2055. https://doi.org/10.1002/wrcr.20185.
Grulke R. & Ziułkiewicz M., 2022. Warunki tlenowe wód powierzchniowych w odcinku źródliskowym Dzierżąznej (Maliny) [Oxygen conditions of surface waters in the spring section of Dzierżązna (Malina)]. Acta Universitatis Lodziensis. Folia Geographica Physica, 21, 7–19. https://doi.org/10.18778/1427-9711.21.01.
Hancock P.J., 2002. Human impacts on the stream-groundwater exchange zone. Environmental Management, 29(6), 763–781. https://doi.org/10.1007/s00267-001-0064-5.
Harvey J.W. & Bencala K.E., 1993. The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resources Research, 29(1), 89–98. https://doi.org/10.1029/92WR01960.
Harvey J.W., Böhlke J.K., Voytek M.A., Scott D. & Tobias C.R., 2013. Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance. Water Resources Research, 49(10), 6298–6316. https://doi.org/10.1002/wrcr.20492.
Harvey J.W., Gomez-Velez J., Schmad N., Scott D., Boyer E., Alexander R., Eng K., Golden H., Kettner A., Konrad Ch., Moore R., Pizzuto J., Schwarz G., Soulsby Ch. & Choi J., 2019. How hydrologic connectivity regulates water quality in river corridors. Journal of American Water Resources Association, 55(2), 369–381. https://doi.org/10.1111/1752-1688.12691.
Hester E.T. & Doyle M.W., 2008. In-stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research, 44(3), W03417. https://doi.org/10.1029/2006WR005810.
Hester E.T., Hammond B. & Scott D.T., 2016. Effects of inset floodplains and hyporheic exchange induced by in-stream structures on nitrate removal in a headwater stream. Ecological Engineering, 97, 452–464. https://doi.org/10.1016/j.ecoleng.2016.10.036.
Hill A.R., Labadia C.F. & Sanmugadas K., 1998. Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry, 42, 285–310. https://doi.org/10.1023/A:1005932528748.
Klatkowa H., 1993. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000: arkusz Zgierz (590). Państwowy Instytut Geologiczny, Warszawa.
Klatkowa H., Kamiński J. & Szafrańska D., 1995. Szczegółowa mapa geologiczna Polski 1:50 000: arkusz Zgierz. Państwowy Instytut Geologiczny, Warszawa.
Klimaszewski M., 1981. Geomorfologia. Państwowe Wydawnictwo Naukowe, Warszawa.
Koike I. & Hattori A., 1978. Denitrification and ammonia formation in anaerobic coastal sediments. Applied and Environmental Microbiology, 35(2), 278–282. https://doi.org/10.1128%2Faem.35.2.278-282.1978.
Krause S., Abbott B.W., Baranov V., Bernal S., Blaen P., Datry T., Drummond J., Fleckenstein J.H., Velez J.G., Hannah D.M., Knapp J.L.A., Kurz M., Lewandowski J., Martí E., Mendoza-Lera C., Milner A., Packman A., Pinay G., Ward A.S. & Zarnetzke J.P., 2022. Organizational principles of hyporheic exchange flow and biogeochemical cycling in river networks across scales. Water Resources Research, 58(3), e2021WR029771. https://doi.org/10.1029/2021WR029771.
Krogulec E., Małecki J., Szostakiewicz-Hołownia M., Trzeciak J., Zabłocki S. & Ziułkiewicz M., 2024. Identification of river valley areas threatening the chemical status of groundwater, on the example of the upper course of the Ner river basin, Central Poland. Quaestiones Geographicae [in press].
Larkin R.G. & Sharp J.M., 1992. On the relationship between river-basin geomorphology, aquifer hydraulics, and ground-water flow direction in alluvial aquifers. GSA Bulletin, 104(12), 1608–1620. https://doi.org/10.1130/0016-7606(1992)104<1608:OTRBRB>2.3.CO;2.
Lautz L.K., Siegel D.I., Bauer R.L., 2006. Impact of debris dams on hyporheic interaction along a semi-arid stream. Hydrological Processes, 20(1), 183–196. https://doi.org/10.1002/hyp.5910.
Lewandowski J. & Nützmann G., 2010. Nutrient retention and release in a floodplain’s aquifer and in the hyporheic zone of a lowland river. Ecological Engineering, 36(9), 1156–1166. https://doi.org/10.1016/j.ecoleng.2010.01.005.
Lewandowski J., Arnon S., Banks E., Batelaan O., Betterle A., Broecker T., Coll C., Drummond J.D., Gaona Garcia J., Galloway J., Gomez-Velez J., Grabowski R.C., Herzog S.P., Hinkelmann R., Höhne A., Hollender J., Horn M.A., Jaeger A., Krause S., …, Wu L., 2019. Is the hyporheic zone relevant beyond the scientific community? Water, 11(11), 2230. https://doi.org/10.3390/w11112230.
Marciniak M. & Chudziak Ł., 2015. Nowa metoda pomiaru współczynnika filtracji osadów dennych [A new method of measuring the hydraulic conductivity of the bottom sediment]. Przegląd Geologiczny, 63(10/2), 919–925.
Marciniak M., Ziułkiewicz M. & Górecki M., 2022. Variability of water exchange in the hyporheic zone of a lowland river in Poland based on gradientometric studies. Quaestiones Geographicae, 41(3), 143–158. https://doi.org/10.2478/quageo-2022-0030.
Marzadri A., Tonina D., Bellin A., Vignoli G. & Tubino M., 2010. Semianalytical analysis of hyporheic flow induced by alternate bars. Water Resources Research, 46(7). W07531. https://doi.org/10.1029/2009WR008285.
Meszczyński J. & Szczerbicka M., 2002. Mapa hydrogeologiczna Polski 1:50 000: arkusz Zgierz (590). Państwowy Instytut Geologiczny, Warszawa.
Moniewski P., 2004. Źródła okolic Łodzi. Acta Geographica Lodziensia, 87, 7–400.
Mycielska-Dowgiałło E., 1995. Wybrane cechy teksturalne osadów i ich wartość interpretacyjna. [in:] Mycielska-Dowgiałło E. & Rutkowski J. (eds.), Badania osadów czwartorzędowych: wybrane metody i interpretacja wyników, Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego, Warszawa, 29–105.
Naranjo R.C., Pohll G., Niswonger R.G., Stone M. & Mckay A., 2013. Using heat as a tracer to estimate spatially distributed mean residence times in the hyporheic zone of a riffle-pool sequence. Water Resources Research, 49(6), 3697–3711. https://doi.org/10.1002/wrcr.20306.
Pazdro Z. & Kozerski B., 1990. Hydrogeologia ogólna. Wydawnictwa Geologiczne, Warszawa.
Pęczkowska B. & Figiel Z., 2006. Baza danych GIS Mapy Hydrogeologicznej Polski 1:50 000. Pierwszy poziom wodonośny. Występowanie i hydrodynamika. Objaśnienia: arkusz Zgierz (590). Państwowy Instytut Geologiczny, Warszawa.
Rozporządzenie, 2021. Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych. Dz.U. 2021 poz. 1475 [Regulation of the Minister of Infrastructure of 25 June 2021 on the classification of ecological status, ecological potential, chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances. Journal of Laws of 2021, item 1475]. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210001475/O/D20211475.pdf [access: 14.02.2023].
Sawyer A.H. & Cardenas M.B., 2009. Hyporheic flow and residence time distributions in heterogeneous cross-bedded sediment. Water Resources Research, 45(8), W08406. https://doi.org/10.1029/2008WR007632.
Sawyer A.H., Cardenas M.B. & Buttles J., 2012. Hyporheic temperature dynamics and heat exchange near channel-spanning logs. Water Resources Research, 48(1), W01529. https://doi.org/10.1029/2011WR011200.
Tiedje J.M., Sexstone A.J., Myrold D.D. & Robinson J.R., 1982. Denitrification: Ecological niches, competition and survival. Antonie van Leeuwenhoek, 48(6), 569–583. https://doi.org/10.1007/BF00399542.
Tonina D., Buffington J.M., 2009. Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3), 1038–1062. https://doi.org/10.1111/j.1749-8198.2009.00225.x.
Triska F.J., Duff J.H. & Avanzino R.J., 1993a. Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel-bottom stream: Examining terrestrial-aquatic linkages. Freshwater Biology, 29(2), 259–274. https://doi.org/10.1111/j.1365-2427.1993.tb00762.x.
Triska F.J., Duff J.H. & Avanzino R.J., 1993b. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface. Hydrobiologia, 251(1–3), 167–184. https://doi.org/10.1007/BF00007177.
Urząd Miasta Zgierza, 2015. Zmiana Studium uwarunkowań i kierunków zagospodarowania planu przestrzennego miasta Zgierz. https://bip.zgierz.pl/?p=document&action=show&id=114&bar_id=239 [access: 14.02.2023].
Vymazal J. & Kröpfelová L., 2008. Transformation Mechanisms of Major Nutrients and Metals in Wetlands. [in:] Vymazal J. & Kröpfelová L., Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow, Environmental Pollution, 14, Springer, Dordrecht, 11–91. https://doi.org./10.1007/978-1-4020-8580-2_2.
Ward A.S., Fitzgerald M., Gooseff M.N., Voltz T.J., Binley A.M. & Singha K., 2012. Hydrologic and geomorphic controls on hyporheic exchange during base flow recession in a headwater mountain stream. Water Resource Research, 48(4), W04513. https://doi.org/10.1029/2011WR011461.
Ward A.S., Schmadel N.M., Wondzell S.M., Harman C., Gooseff M.N. & Singha K., 2016. Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession. Water Resource Research, 52(2), 1479–1497. https://doi.org/10.1002/2015WR018225.
Woessner W.W, 2000. Stream and fluvial palin ground water interactions: Rescaling hydrogeologic throut. Ground Water, 38(3), 423–429. https://doi.org/10.1111/j.1745-6584.2000.tb00228.x.
Wondzell S.M., 2011. The role of the hyporheic zone across stream networks. Hydrological Processes, 25(22), 3525–3532. https://doi.org/10.1002/hyp.8119.
Wörman A., Packman A.I., Marklund L., Harvey J. & Stone S.H., 2007. Fractal topography and subsurface water flows from fluvial bed forms to the continental shield. Geophysical. Research Letters, 34(7), L07402. https://doi.org/10.1029/2007GL029426.
Zamojski M. & Tusiński J., 2011. Szczegółowa specyfikacja techniczna wykonania i odbioru robót budowlanych. Budowa zbiornika retencyjnego pn. „Rudunki”. Zamawiający: Nadleśnictwo Grotniki [unpublished].
Zarnetske J.P., Haggerty R., Wondzell S.M. & Baker M.A., 2011. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research, 116(G1), G01025. https://doi.org/10.1029/2010JG001356.
Zimmer M.A. & Lautz L.K., 2014. Temporal and spatial response of hyporheic zone geochemistry to a storm event. Hydrological Processes, 28(4), 2324–2337. https://doi.org/10.1002/hyp.9778.
Ziułkiewicz M., 2022. Salinization of the Moszczenica river’s hyporheic zone in the vinciny of the Rogóźno salt dome. Acta Geographica Lodziensia, 112, 163–184. https://doi.org/10.26485/AGL/2022/112/10.
Ziułkiewicz M., Grulke R. & Gajda N., 2021. Identyfikacja dopływu substancji biogennych ze strefy hyporeicznej do koryta cieku źródliskowego na obszarze podmiejskim. [in:] Czerniawski R. & Bilski P. (red.), Funkcjonowanie i ochrona wód płynących, Volumina.pl Daniel Krzanowski, Szczecin, 263–281.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)