Determination of catchment-scale hydrogeological parameters of fractured crystalline rocks using streamflow recession analysis – an example from south-western Poland

Authors

DOI:

https://doi.org/10.7494/geol.2024.50.2.119

Keywords:

recession flow analysis, hydrogeological parameters, mountainous terrain, Poland, fractured-flow

Abstract

To estimate catchment-scale hydrogeological parameters such as hydraulic conductivity (k) and specific yield (Sy), the streamflow recession analysis method proposed by Brutsaert and Nieber (1977) was used. The analysis employed the technique of fitting a theoretical recession curve to the observed data in which three points of transition between the short- and long-term flow regimes were determined. This method is a simple, fast, and cheap alternative to standard point-based hydrogeological methods using investigations carried out in hydrogeological boreholes. The study area covered the mountainous catchment of the Biała Lądecka River, located in south-western Poland and composed of metamorphic rocks. The hydrogeological environments drained by the Biała Lądecka are two zones, i.e. the zone of weathered covers and rock debris and the zone of fractured rock mass. The k values determined based on the recession analysis were in the boundary zone of the range from 10−4 to 10−5 m/s and they represented the upper range of the values reported in the literature (from 10−4 to 10−7 m/s). The Sy values at a level of 0.38–1.02%, in turn, entirely fitted the literature data. The results confirm the thesis that the recession method, despite certain limitations in terms of its applicability, can be well adapted to the conditions of a mountainous catchment composed of crystalline rocks where a cool temperate climate prevails.

Downloads

Download data is not yet available.

References

Boussinesq J., 1904. Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. Journal de Mathématiques Pures et Appliquées, 5(10), 5–78. http://www.numdam.org/item/?id=JMPA_1904_5_10__5_0.

Brutsaert W., 1994. The unit response of groundwater outflow from a hillslope. Water Resources Research, 30(10), 2759–2763. https://doi.org/10.1029/94WR01396.

Brutsaert W. & Lopez J.P., 1998. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern great plains. Water Resources Research, 34(2), 233–240. https://doi.org/10.1029/97WR03068.

Brutsaert W. & Nieber J.L., 1977. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 3(3), 637–643. https://doi.org/10.1029/WR013i003p00637.

Dewandel B., Lachassagne P., Bakalowicz M., Weng Ph. & Al-Malki A., 2003. Evaluation of aquifer thickness by analysing recession hydrographs: Application to the Oman ophiolite hard-rock aquifer. Journal of Hydrology, 274, 248–269. https://doi.org/10.1016/S0022-1694(02)00418-3.

Döll P., 2009. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ-mental Research Letters, 4(3), 035006. https://doi.org/10.1088/1748-9326/4/3/035006.

Earman S., McPherson B.J.O.L., Phillips F.M., Ralser S., Herrin J.M. & Broska J., 2008. Tectonic influence on ground water quality: insight from complementary methods. Ground Water, 46(3), 354–371. https://doi.org/10.1111/j.1745-6584.2007.00402.x.

Huang C.-C. & Yeh H.-F., 2019. Hydrogeological parameter determination in the southern catchments of Taiwan by flow recession method. Water, 11(1), 7–23. https://doi.org/10.3390/w11010007.

Kubiak-Wójcicka K. & Machula S., 2020. Influence of climate changes on the state of water resources in Poland and their usage. Geo-sciences, 10(8), 312. https://doi.org/10.3390/geosciences10080312.

Malvicini C.F., Steenhuis T.S., Walter M.T., Parlange J.Y. & Walter M.F., 2005. Evaluation of spring flow in the uplands of Matalom, Leyte, Philippines. Advances in Water Resources, 28(10), 1083–1090. https://doi.org/10.1016/j.advwatres.2004.12.006.

Mendoza G.F., Steenhuis T.S., Walter M.T. & Parlange J.Y., 2003. Estimating basin-wide hydraulic parameters of a semi-arid moun-tainous watershed by recession flow analysis. Journal of Hydrology, 279, 57–69. https://doi.org/10.1016/S0022-1694(03)00174-4.

Modelska M., Buczyński S. & Staśko S., 2015. Chemizm wód zlewni Kamieńczyka w Sudetach na tle badań systemów przepływu wód podziemnych [Chemical composition of groundwater of Kamieńczyk catchment area in Sudety Mts. in relation to groundwater flow systems]. Przegląd Geologiczny, 63(10/2), 950–954.

Olichwer T., 2019. Long-term variability of water resources in mountainous areas: Case study – Kłodzko Region (SW Poland). Car-pathian Journal of Earth and Environmental Sciences, 14(1), 29–38. https://doi.org/10.26471/cjess/2019/014/055.

Olichwer T. & Tarka R., 2015. Impact of climate change on the groundwater run-off in south-west Poland. Open Geosciences, 7(1), 1–14. https://doi.org/10.1515/geo-2015-0001.

Oyarzún R., Godoy R., Núñez J., Fairley J.P., Oyarzún J., Maturana H. & Freixas G., 2014. Recession flow analysis as a suitable tool for hydrogeological parameter determination in steep, arid basins. Journal of Arid Environments, 105, 1–11. https://doi.org/10.1016/j.jaridenv.2014.02.012.

Pacheco F. & Alencoão A., 2002. Occurrence of springs in massifs of crystalline rocks, northern Portugal. Hydrogeology Journal, 10, 239–253. https://doi.org/10.1007/s10040-001-0186-0.

Parlange J.Y., Stagnitti F., Heilig A., Szilagyi J., Parlange M.B., Steenhuis T.S., Hogarth W.L., Barry D.A. & Li L., 2001. Sudden drawdown and drainage of a horizontal aquifer. Water Resources Research, 37(8), 2097–2101. https://doi.org/10.1029/2000WR000189.

Rupp D.E. & Selker J.S., 2006. On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers. Water Resources Research, 42(12), W12421. https://doi.org/10.1029/2006WR005080.

Sawicki L. (red.), 1966. Mapa geologiczna regionu dolnośląskiego (bez osadów czwartorzędowych) 1:200,000. Instytut Geologiczny, Warszawa.

Senkondo W., Tuwa J., Koutsouris A. & Lyon S.W., 2017. Estimating aquifer transmissivity using the recession curve displacement method in Tanzania’s Kilombero Valley. Water, 9(12), 948. https://doi.org/10.3390/w9120948.

Staśko S., 2002. Zawodnienie szczelinowych skał krystalicznych w Sudetach [Water-bearing capacity of hard rocks in the Sudetes]. Biuletyn Państwowego Instytutu Geologicznego, 404, 249–262.

Staśko S. & Tarka R., 2001. Zasilanie wód podziemnych na obszarze Masywu Śnieżnika. [in:] Bocheńska T. & Staśko S. (red. nauk.), Współczesne problemy hydrogeologii, 10, 1, “Sudety” na zlecenie Instytutu Nauk Geologicznych Uniwersytetu Wrocławskiego, Wrocław, 271–278.

Staśko S. & Tarka R., 2002. Zasilanie i drenaż wód podziemnych w obszarach górskich na podstawie badań w Masywie Śnieżnika. Acta Universitatis Wratislaviensis. Hydrogeologia, 2528, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław.

Staśko S., Tarka R., Olichwer T. & Lubczyński M.W., 2010. Groundwater recharge in mountainous terrains – case study from Sude-ten Mountains in SW Poland. [in:] Paliwal B.S. (ed.), Global Groundwater Resources and Management: Selected Papers from the 33rd International Geological Congress (33rd IGC), Oslo, Norway, August, 2008, Scientific Publishers, Jodhpur (India), 451–474.

Stoelzle M., Stahl K. & Weiler M., 2013. Are streamflow recession characteristics really characteristics? Hydrology and Earth System Sciences, 17(2), 817–828. https://doi.org/10.5194/hess-17-817-2013.

Szczepanowski S. & Staśko S., 2001. Wartość współczynnika filtracji dla skał obszaru Masywu Śnieżnika na podstawie pomiaru szczelinowatości. [in:] Bocheńska T. & Staśko S. (red. nauk.), Współczesne problemy hydrogeologii, 10, 1, “Sudety” na zlecenie Instytutu Nauk Geologicznych Uniwersytetu Wrocławskiego, Wrocław, 263–270.

Thomas B.F., Vogel R.M., Kroll C.N. & Famiglietti J.S., 2013. Estimation of the base-flow recession constant under human interfer-ence. Water Resources Research, 49(11), 7366–7397. https://doi.org/10.1002/wrcr.20532.

Troch P.A., De Troch F.P. & Brutsaert W., 1993. Effective water table depth to describe initial conditions prior to storm rainfall in humid regions. Water Resources Research, 29(2), 427–434. https://doi.org/10.1029/92WR02087.

Vannier O., Braud I. & Anquetin S., 2014. Regional estimation of catchment – Scale soil properties by means of streamflow recession analysis for use in distributed hydrological models. Hydrology Processes, 28(26), 6276–6291. https://doi.org/10.1002/hyp.10101.

Zecharias Y.B. & Brutsaert W., 1988. Recession characteristics of groundwater outflow and baseflow from mountainous watersheds. Water Resources Research, 24(10), 1651–1658. https://doi.org/10.1029/WR024i010p01651.

Żelaźniewicz A., Mazur S. & Szczepański J., 2002. The Lądek-Śnieżnik Metamorphic Unit – Recent State of Knowledge. Geolines, 14, 115–125.

Downloads

Published

2024-04-22

How to Cite

Olichwer, T. (2024). Determination of catchment-scale hydrogeological parameters of fractured crystalline rocks using streamflow recession analysis – an example from south-western Poland. Geology, Geophysics and Environment, 50(2), 119–130. https://doi.org/10.7494/geol.2024.50.2.119

Issue

Section

Articles