The usability of the Nash cascade-submerged cascade rainfall-runoff model with regard to other conceptual models

Authors

DOI:

https://doi.org/10.7494/geol.2024.50.3.295

Keywords:

rainfall-runoff process, hydrological modelling, conceptual models, parameters estimation

Abstract

Conceptual hydrological models are an effective tool used to forecast runoff from catchments and assess changes in catchment dynamics. The article presents a modified concept of the Diskin parallel cascade model, with the replacement of one of the cascades with the submerged cascade model – the Nash cascade-submerged cascade model (NCSC2). Considering a watershed as a system where total runoff is determined by amounts of both surface and subsurface runoffs, the use of different model structures as surface and subsurface runoffs is reasonable. Adopting 13 different objective functions, the comparative analysis of NCSC2, Nash cascade, Diskin model, single linear reservoir and submerged reservoir cascade (SC2) models has been carried out in the catchment of six Polish rivers. The research has shown that the use of the submerged cascade as one of the Diskin model cascades positively affects the quality of the model.

Downloads

Download data is not yet available.

References

Bardossy A., 2007. Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences, 11(2), 703−710. https://doi.org/10.5194/hess-11-703-2007.

Byczkowski A., 1996. Wybrane zagadnienia modelowania matematycznego w hydrologii. [in:] Byczkowski A., Hydrologia. T. 2, Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego, Warszawa, 268−294.

Chiew F.H.S., Stewardson M.J. & McMahon T.A., 1993. Comparison of six rainfall-runoff modelling approaches. Journal of Hydrology, 147(1), 1−36. https://doi.org/10.1016/0022-1694(93)90073-I.

Crooks S.M. & Naden P.S., 2007. CLASSIC: A semi-distributed rainfall-runoff modelling system. Hydrology and Earth System Sciences, 11(1), 516−531. https://doi.org/10.5194/hess-11-516-2007.

Dijk A.I.J.M, van., 2010. Selection of an appropriately simple storm runoff model. Hydrology and Earth System Sciences, 14(3), 447−458. https://doi.org/10.5194/hess-14-447-2010.

Diskin M.H., 1980. Estimation of urbanization effects by a parallel cascades model. [in:] The Influence of man on the hydrological regime with special reference to representative and experimental basins: Symposium: Proceedings of the Helsinki symposium, 23–26 June 1980, IAHS-AISH Publication, 130, International Association of Hydrological Sciences, Washington, D.C., 7−42.

Esse W.R., van, Perrin C., Booij M.J., Augustijn D.C.M., Fenicia F., Kavetski D. & Lobligeois F., 2013. The influence of conceptual model structure on model performance: a comparative study for 237 French catchments. Hydrology and Earth System Sciences, 17(10), 4227−4239. https://doi.org/10.5194/hess-17-4227-2013.

Janicka E., Kanclerz J., Agaj T., Gizińska K., 2023. Comparison of two hydrological models, the HEC-HMS and Nash models, for runoff estimation in Michałówka River. Sustainability, 15(10), 7959. https://doi.org/10.3390/su15107959.

Krause P., Boyle D.P. & Base F., 2005. Comparison of different efficiency criteria for hydrological model. Advances in Geosciences, 5, 89−97. https://doi.org/10.5194/adgeo-5-89-2005.

Krężałek K., 2022. Procesy kształtowania się odpływu rzecznego jako podstawa do zarządzania zasobami wodnymi. Gospodarka Wodna, 3, 28−33. https://doi.org/10.15199/22.2022.3.4.

Kundzewicz Z.W. & Napiórkowski J.J., 1986. Nonlinear models of dynamic hydrology. Hydrological Sciences, 31(2), 163−185. https://doi.org/10.1080/02626668609491038.

Kurnatowski J., 2017. Technical note: Cascade of submerged reservoirs as a rainfall-runoff model. Hydrology and Earth System Sciences, 21(9), 4649−4661. https://doi.org/10.5194/hess-21-4649-2017.

Littlewood I., 2002. Improved unit hydrograph characterisation of daily flow regime (including low flows) for the River Teifi, Wales: towards better rainfall-streamflow models for regionalisation. Hydrology and Earth System Sciences, 6(5), 899−911. https://doi.org/10.5194/hess-6-899-2002.

Liu Z. & Todini E., 2002. Towards a comprehensive physically-based rainfall-runoff model. Hydrology and Earth System Sciences, 6(5), 859−881. https://doi.org/10.5194/hess-6-859-2002.

Moussa R. & Chahinian N., 2009. Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events. Hydrology and Earth System Sciences, 13(4), 519−535. https://doi.org/10.5194/hess-13-519-2009.

Nourani V., 2008. A comparative study on calibration methods of Nash’s rainfall-runoff model to Ammameh watershed, Iran. Journal of Urban and Environmental Engineering, 2(1), 14−20. https://www.jstor.org/stable/26203317.

Onyando J.O., Schumann A.H. & Schultz G.A., 2003. Simulation of flood hydrographs based on lumped and semi-distributed models for two tropical catchments in Kenya. Hydrological Sciences Journal, 48(4), 511−524. https://doi.org/10.1623/hysj.48.4.511.51411.

Patil S.R., 2008. Regionalization of an event based Nash Cascade Model for flood predictions in ungauged basins. Institut für Wasserbau der Universität Stuttgart, Stuttgart. https://doi.org/10.18419/opus-288.

Perrin C., Michel C. & Andréassian V., 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. Journal of Hydrology, 242(3), 275−301. https://doi.org/10.1016/S0022-1694(00)00393-0.

Reed S., Koren V., Smith M., Zhang Z., Moreda F., Seo D.-J. & DMIP Participants, 2004. Overall distributed model intercomparison project results. Journal of Hydrology, 298(1–4), 27−60. https://doi.org/10.1016/j.jhydrol.2004.03.031.

Refsgaard J.C. & Knudsen J., 1996. Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32(7), 2189−2202. https://doi.org/10.1029/96WR00896.

Rymsza J., Kodura A., Kubrak J., Kubrak M., Kuźniar P. & Utrysko B., 2021. WR-M-12: Wytyczne obliczania świateł drogowych mostów i przepustów hydraulicznych. Skarb Państwa – Minister Infrastruktury, Warszawa.

Schuurmans J.M. & Bierkens M.F.P., 2007. Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model. Hydrology and Earth System Sciences, 11(2), 677−693. https://doi.org/10.5194/hess-11-677-2007.

Sikorska A.E., Scheidegger A., Banasik K. & Rieckermann J., 2012. Bayesian uncertainty assessment of flood predictions in gauged urban basins for conceptual rainfall-runoff models. Hydrology and Earth System Sciences, 16(4), 1221−1236. https://doi.org/10.5194/hess-16-1221-2012.

Sikorska A.E., Scheidegger A., Banasik K. & Rieckermann J., 2013. Considering rating curve uncertainty in water level predictions. Hydrology and Earth System Sciences, 17(11), 4415−4427. https://doi.org/10.5194/hess-17-4415-2013.

Soczyńska U. (red.), 1990. Podstawy hydrologii dynamicznej. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.

Spada E., Tucciarelli T., Sinagra M., Sammartano V. & Corato G., 2015. Computation of vertically averaged velocities in irregular sections of straight channels. Hydrology and Earth System Sciences, 19(9), 3857−3873. https://doi.org/10.5194/hess-19-3857-2015.

Vilaseca F., Narbondo S., Chreties C., Castro A. & Gorgoglione A., 2021. A comparison between lumped and distributed hydrological models for daily rainfall-runoff simulation. IOP Conference Series: Earth and Environmental Science, 958, 012016. https://doi.org/10.1088/1755-1315/958/1/012016.

Wicherek S., 1995. Spływ podpowierzchniowy i jego wpływ na wezbranie i poziom wód gruntowych. Sylwan, 139(12), 47–50.

Zhang G.P. & Savenije H.H.G., 2005. Rainfall-runoff modelling in a catchment with a complex groundwater flow system: application of the Representative Elementary Watershed (REW) approach. Hydrology and Earth System Sciences, 9(3), 243−261. https://doi.org/10.5194/hess-9-243-2005.

Downloads

Published

2024-09-26

How to Cite

Laskowski, N., & Kurnatowski, J. (2024). The usability of the Nash cascade-submerged cascade rainfall-runoff model with regard to other conceptual models. Geology, Geophysics and Environment, 50(3), 295–306. https://doi.org/10.7494/geol.2024.50.3.295

Issue

Section

Articles