Ash admixtures formed during the loss on ignition (LOI) procedure and their impact on laser textural analysis results

Authors

DOI:

https://doi.org/10.7494/geol.2024.50.2.155

Keywords:

loss on ignition, biogenic deposits ash, laser textural analysis, ash purification procedure (APP), metal oxides and carbonates

Abstract

We present an experimental study that explores the feasibility of using the ash from biogenic deposits for laser textural analysis. The results have demonstrated that conducting ash textural analysis without prior chemical treatment can lead to unreliable results. Among other things, this is due to the “contamination” of the ash with aggregates formed by metal oxides and carbonates during ignition (LOI550 procedure) in a muffle furnace. Metal oxides and carbonates can create aggregates with silt and clay grains. As a result, the material coarsens, mainly to very coarse and coarse silt fractions. It is illustrated that the ash after LOI550 has been contaminated with oxides and carbonates of iron (Fe), potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn), sodium (Na), zinc (Zn), lead (Pb) and copper (Cu). Thus, we suggest a method of using 10% HCl to purify the ash from metal oxides and carbonates (so-called ash purification procedure or APP). The analysis in this paper focuses on the grain size composition of ash, both untreated and HCl-treated. The obtained results have been compared and discussed in detail.

Downloads

Download data is not yet available.

References

Bigham J.M., Fitzpatrick R.W. & Schulze D.G., 2002. Iron Oxides. [in:] Dixon J.B. & Schulze D.G. (Eds.), Soil Mineralogy with Environmental Applications, SSSA Book Series, 7, Soil Science Society of America, Madison, 323–366. https://doi.org/10.2136/sssabookser7.c10.

Blott S.J. & Pye K., 2001. GRADISTAT: Agrain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237–1248. https://doi.org/10.1002/esp.261.

Brown P.A., Gill S.A. & Allen S.J., 2000. Metal removal from wastewater using peat. Water Research, 34(16), 3907–3916. https://doi.org/10.1016/S0043-1354(00)00152-4.

Bruchajzer E., Frydrych B. & Szymańska J., 2017. Tlenki żelaza – w przeliczeniu na Fe. Dokumentacja proponowanych dopuszczal-nych wielkości narażenia zawodowego. Podstawy i Metody Oceny Środowiska Pracy, 2(92), 51–87. https://doi.org/10.5604/01.3001.0009.9360.

Dean W.E. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Petrology, 44(1), 242–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D.

Folk R.L. & Ward W.C., 1957. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrolo-gy, 27(1), 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.

Heiri O., Lotter A.F. & Lemcke G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110. https://doi.org/10.1023/A:1008119611481.

Kaur H., Kaur H., Kaur H. & Srivastava S., 2023. The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regula-tion, 100(2), 219–236. https://doi.org/10.1007/s10725-022-00837-6.

Kissinger H.E., McMurdie H.F. & Simpson B.S., 1956. Thermal decomposition of manganous and ferrous carbonates. Journal of the American Ceramic Society, 39(5), 168–172. https://doi.org/10.1111/j.1151-2916.1956.tb15639.x.

Kittel P., Mazurkevich A., Alexandrovskiy A., Dolbunova E., Krupski M., Szmańda J., Stachowicz-Rybka R., Cywa K., Mroczkowska A. & Okupny D., 2020. Lacustrine, fluvial and slope deposits in the wetland shore area in Serteya, Western Russia. Acta Geo-graphica Lodziensia, 110, 103–124. https://doi.org/10.26485/AGL/2020/110/7.

Kittel P., Muzolf B., Płóciennik M., Elias S., Brooks S.J., Lutyńska M., Pawłowski D., Stachowicz-Rybka R., Wacnik A., Okupny D., Głąb Z. & Mueller-Bieniek A., 2014. A multi-proxy reconstruction from Lutomiersk-Koziówki, Central Poland, in the context of early modern hemp and flax processing. Journal of Archaeological Science, 50, 318–337. https://doi.org/10.1016/j.jas.2014.07.008.

Kittel P., Płóciennik M., Borówka R.K., Okupny D., Pawłowski D., Peyron O., Stachowicz-Rybka R., Obremska M. & Cywa K., 2016. Early Holocene hydrology and environments of the Ner River (Poland). Quaternary Research, 85(2), 187–203. https://doi.org/10.1016/j.yqres.2015.12.006.

Kowalska J. & Królak B., 1967. Wybielanie i usuwanie tlenków żelaza z surowców kaolinowych okolic Bolesławca metodami che-micznymi. Przegląd Geologiczny, 15(2), 120–121.

Krumins J. & Robalds A., 2015. Biosorption of metallic elements onto fen peat. Environmental and Climate Technologies, 14(1), 12–17. https://doi.org/10.1515/rtuect-2014-0008.

Markowski S., 1980. Struktura i właściwości podtorfowych osadów jeziornych rozprzestrzenionych na Pomorzu Zachodnim jako podstawa ich rozpoznawania i klasyfikacji [Structure and properties of peatlands’ bottom lake sediments of frequent occurrence in West Pomerania region as a basis for their identification and classification]. [in:] Krajowa konferencja naukowo techniczna Kreda jeziorna i gytie: Materiały pokonferencyjne: Lubniewice, 8–10 XI 1979 r. Tom 2, Urząd Wojewódzki w Gorzowie Wielkopolskim, Gorzów Wielkopolski – Zielona Góra, 45–55.

Mikutta R., Kleber M., Kaiser K. & Jahn R., 2005. Review: Organic matter removal from soils using hydrogen peroxide, sodium hy-pochlorite, and disodium peroxodisulfate. Soil Science Society of America Journal, 69(1), 120–135. https://doi.org/10.2136/sssaj2005.0120.

Okupny D., Borówka R.K., Cedro B., Sławińska J., Tomkowiak J., Michczyński A., Kozłowska D., Kowalski K. & Siedlik K., 2020. Geochemistry of a sedimentary section at the Wąwelnica archaeological site, Szczecin Hills (Western Pomerania). Acta Geographica Lodziensia, 110, 169–186. https://doi.org/10.26485/AGL/2020/110/11.

Okupny D., Antczak-Orlewska O., Pawłowski D., Borówka R.K., Sławińska J., Tomkowiak J., Osóch P., Bartczak A., Nierychlewska A., Osóch B., Krąpiec M., Jucha W., Kittel P., Sady-Bugajska A. & Spławski S., 2022. How well multi-indicator pal-aeo-environmental studies meet the needs of research on settlements, on the example of the early medieval settlement complex in Szczecin: methodological problems and evaluating interpretation value. Acta Geographica Lodziensia, 112, 97–121. https://doi.org/10.26485/AGL/2022/112/7.

Patel A., Tiwari S., Raju A., Pandey N., Singh M. & Prasad S.M., 2020. Heavy metal contamination of environment and crop plants. [in:] Mishra K., Tandon P.K. & Srivastava S. (eds.), Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants, Springer, Singapore, 303–333. https://doi.org/10.1007/978-981-15-8636-1_12.

Rashid M.A., 1974. Absorption of metals on sedimentary and peat humic acids. Chemical Geology, 13(2), 115–123. https://doi.org/10.1016/0009-2541(74)90003-5.

Surgiewicz J., 2013. Metoda oznaczania tlenków żelaza na stanowisku pracy. Podstawy i Metody Oceny Środowiska Pracy, 1(75), 89–99.

Tobolski K., 2021. Przewodnik do oznaczania torfów i osadów jeziornych. Wydawnictwo Naukowe PWN, Warszawa.

Tołoczko W., 2016. Method for determining iodine-127 in soils. Soil Science Annual, 67(4), 197–203. https://doi.org/10.1515/ssa-2016-0025.

Tsvirko D., 2023. The natural environment in the vicinity of Lake Sporovskoye in the Late Glacial and Holocene. Acta Palaeobotanica, 63(1), 65–86. https://doi.org/10.35535/acpa-2023-0005.

Tsvirko D., Kalicki T. & Trifonov Y., 2021a. The history of the development of the natural environment in the Kokoritsa microregion (Belarus). [in:] 7th International Scientific Conference GEOBALCANICA 2021: Proceedings: 15–16 June 2021, Ohrid, North Macedonia: Hybrid Conference, Geobalcanica Society, Skopje, 101–110. https://doi.org/10.18509/GBP210101t.

Tsvirko D., Kryvaltsevich M., Tkachou A., Trifonov Y., Kalicki T., Frączek M. & Kusztal P., 2021b. Late Glacial and Holocene evolu-tion of landscapes on the territory of Sporovsky Reserve (Belarusian Polesie). Acta Geobalcanica, 7–3, 93–100. https://doi.org/10.18509/AGB.2021.13.

Tsvirko D., Tołoczko W. & Kittel P., 2022a. Sedimentological analysis of the ash remaining after Loss-On-Ignition – methodological aspect. [in:] Dzieduszyńska D. (red.), Sesja naukowa: Paleogeografia schyłku vistulianu: Popów, 13–14 czerwca 2022 r., Katedra Geologii i Geomorfologii Uniwersytetu Łódzkiego, Komitet Badań Czwartorzędu Polskiej Akademii Nauk, Stowarzyszenie Geo-morfologów Polskich, Popów, 47–49.

Tsvirko D., Tołoczko W. & Kittel P., 2022b. Sedimentological analysis of the ash remaining after Loss-On-Ignition – methodological aspect [poster]. Paleogeografia schyłku Vistulianu, Popów, Poland, 13–14 June 2022. https://www.researchgate.net/publication/361554900_Sedimentological_analysis_of_the_ash_remaining_after_Loss-On-Ignition_-_methodological_aspect_POSTER.

Udden J.A., 1914. Mechanical composition of clastic sediments. Geological Society of America Bulletin, 25(1), 655–744. https://doi.org/10.1130/GSAB-25-655.

Vatansever R., Ozyigit I.I. & Filiz E., 2017. Essential and beneficial trace elements in plants, and their transport in roots: A review. Applied Biochemistry and Biotechnology, 181(1), 464–482. https://doi.org/10.1007/s12010-016-2224-3.

Wentworth C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 377–392. https://doi.org/10.1086/622910.

Żarczyński M., Szmańda J. & Tylmann W., 2019. Grain-size distribution and structural characteristics of varved sediments from Lake Żabińskie (Northeastern Poland). Quaternary, 2(1), 8. https://doi.org/10.3390/quat

Downloads

Additional Files

Published

2024-06-07

How to Cite

Tsvirko, D., Tołoczko, W., & Kittel, P. (2024). Ash admixtures formed during the loss on ignition (LOI) procedure and their impact on laser textural analysis results. Geology, Geophysics and Environment, 50(2), 155–174. https://doi.org/10.7494/geol.2024.50.2.155

Issue

Section

Articles