The development and origin of the two-stage silicification of Upper Jurassic limestones from the northern part of the Kraków-Częstochowa Upland (Southern Poland)

Authors

DOI:

https://doi.org/10.7494/geol.2023.49.3.225

Keywords:

chert concretions; silicified limestones; stages of silicification; Upper Jurassic; tectonics, Kraków-Częstochowa Upland

Abstract

The Upper Jurassic carbonates representing the microbial-sponge megafacies in the area of the Kraków-Częstochowa Upland (KCU) were locally silicified. In the reclaimed Lipówki Quarry, in Rudniki near Częstochowa (in the northern part of the Upland), macroscopically different silicification products were observed in blocks of Upper Jurassic limestones, deposited as mining waste. Two varieties were distinguished: (i) chert concretions representing the I silicification stage and (ii) light-brown, silicified limestones infilling the fractures in chert concretions or forming the cortices around the concretions or forming irregular bodies, all representing the II silicification stage. The diagnostic features are the following: (i) macroscopic development, (ii) the presence of moganite exclusively in chert concretions and (iii) significant differences in crystallinity index (CI) values, namely: 0.1–0.7 for chert concretions and 6.0–6.6 for silicified limestones. The formation of chert concretions was initiated as early as in unconsolidated sediment, whereas the II silicification stage followed the chemical compaction of the limestones. The results of geochemical analyses of the products of both silicification stages indicated that the probable source of silica were the low-temperature hydrothermal solutions. Two types of fractures were found in the chert concretions, generated during different tectonic events. The older, open fractures were formed during the extension of the Late Jurassic sedimentary basin, which formerly occupied the territory of the more recent KCU. These fractures were infilled with unconsolidated, fine-detrital carbonate sediment, in which the concretions were embedded and finally silicified in the II silicification stage. The younger, closed fractures, transversal to those filled by the products of II silicification stage, along which small displacements are evident, document the later tectonic deformations presumably related to Cenozoic faulting.

Downloads

Download data is not yet available.

References

Abu-Mahfouz I.S., Cartwright J.A., Powell J.H., Abu-Mahfouz M.S., Olaf G. & Podlaha O.G., 2023. Diagenesis, compaction strain and deformation associated with chert and carbonate concretions in organic-rich marl and phosphorite; Upper Cretaceous to Eocene, Jordan. Sedimentology, 70(5), 1521–1552. https://doi.org/10.1111/sed.13085.

Adachi M., Yamamoto K. & Sugisaki R., 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1–2), 125–148. https://doi.org/10.1016/0037-0738(86)90075-8.

Aldinger H., 1945. Zur Stratigraphie des weißen Jura Delta in Württemberg. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins Band, 31, 111–152. https://doi.org/10.1127/jmogv/31/1945/111.

Alexandrowicz S.W., 1960. Budowa geologiczna okolic Tyńca [Geological structure of the vicinity of Tyniec]. [in:] Materiały do geologii obszaru śląsko-krakowskiego, 5, Instytut Geologiczny – Biuletyn, 152, Wydawnictwa Geologiczne, Warszawa, 5−93.

Bau M. & Dulski P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1–2), 37–55. https://doi.org/10.1016/0301-9268(95)00087-9.

Bąbelewska A., 2013. Porosty – mali pionierzy (stanowisko 9). [in:] Śliwińska-Wyrzychowska A. (red.), Kopalnia przywrócona naturze: Przewodnik po przyrodniczej ścieżce dydaktyczno-edukacyjnej na obszarze nieczynnej kopalni odkrywkowej ‚‚Lipówka” w Rudnikach koło Częstochowy, Agencja Wydawnicza „ARGI”, Wrocław, 80–85.

Bąbelewska A., Musielińska R., Śliwińska-Wyrzychowska A., Bogdanowicz M. & Witkowska E., 2014. Edukacyjna rola nieczynnego kamieniołomu „Lipówka” w Rudnikach koło Częstochowy [The educational role of the “Lipówka” abandoned quarry in Rudniki near Czestochowa]. Prace Komisji Krajobrazu Kulturowego PTG, 26, 57–66.

Beauchamp B. & Baud A., 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 184(1–2), 37–63. https://doi.org/10.1016/S0031-0182(02)00245-6.

Bednarek J., Górecka E. & Zapaśnik T., 1983. Uwarunkowanie tektoniczne rozwoju mineralizacji kruszcowej w utworach jurajskich monokliny śląsko-krakowskiej [Tectonically controlled development of ore mineralization in Jurassic sequence of the Silesian-Cracovian monocline]. Annales Societatis Geologorum Poloniae, 53(1–4), 43–62.

Beurer M., 1971. Kieselsäureanreicherungen in den oberjurasischen Sedimenten der Schwäbischen Alb. Beihefte zum Geologischen Jahrbuch, 69, 1–109.

Bolton E.W., Lasaga A.C. & Rye D.M., 1999. Long-term flow/chemistry feedback in a porous medium with heterogeneous permeability; kinetic control of dissolution and precipitation. American Journal of Science, 299(1), 1–68. https://doi.org/10.2475/ajs.299.1.1.

Boström K., 1983. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits. [in:] Rona P.A., Boström K., Laubier L. & Smith K.L. (eds.), Hydrothermal Processes at Seafloor Spreading Centers, Plenum Press, New York, 473–483.

Bourli N., Kokkaliari M., Iliopoulos I., Pe-Piper G., Piper D.J., Maravelis A.G. & Zelilidis A., 2019. Mineralogy of siliceous concretions, cretaceous of Ionian zone, western Greece: implication for diagenesis and porosity. Marine and Petroleum Geology, 105, 45–63. https://doi.org/10.1016/j.marpetgeo.2019.04.011.

Bukowy S., 1960. Uwagi o sedymentacji i diagenezie albu okolic Krakowa. [in:] Materiały do geologii obszaru śląsko-krakowskiego, 5, Instytutu Geologiczny – Biuletyn, 152, Wydawnictwa Geologiczne, Warszawa, 243–276.

Bustillo M.Á. & Ruiz-Ortiz P.A., 1987. Chert occurrences in carbonate turbidites: Examples from the Upper Jurassic of the Betic Mountains (southern Spain). Sedimentology, 34(4), 611−621. https://doi.org/10.1111/j.1365-3091.1987.tb00790.x.

Bustillo M.Á., Delgado A., Rey J. & Ruiz-Ortiz P.A., 1998. Meteoric water participation in the genesis of Jurassic cherts in the Subbetic of southern Spain – a significant indicator of penecontemporaneous emergence. Sedimentary Geology, 119(1−2), 85−102. https://doi.org/10.1016/S0037-0738(98)00050-5.

Chen D., Hairou Q., Xin Y. & He L., 2006. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert. Sedimentary Geology, 183(3–4), 203–216. https://doi.org/10.1016/j.sedgeo.2005.09.020.

Czop M., Guzik M., Motyka J., Pacholewski A. & Różkowski K., 2009. Warunki hydrogeologiczne złoża wapieni i margli Latosówka-Rudniki w Rudnikach koło Częstochowy [Hydrogeological conditions of the Latosówka-Rudniki limestone and marl deposit in Rudniki near Częstochowa]. Biuletyn Państwowego Instytutu Geologicznego, 436(9/1), 69–75.

Dapples E.C., 1967. The diagenesis of sandstones. [in:] Larsen G. & Chilingar G.V. (eds.), Diagenesis in Sediments, Elsevier, Amsterdam, London, New York, 91−125.

Dong Y., He D., Sun S., Liu X., Zhou X., Zhang F., Yang Z. et al., 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186, 231−261. https://doi.org/10.1016/j.earscirev.2017.12.006.

Douville E., Bienvenu P., Charlou J.L., Donval J.P., Fouquet Y., Appriou P. & Gamo T., 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5), 627–643. https://doi.org/10.1016/S0016-7037(99)00024-1.

Dulski P., 1994. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasmamass spectrometry. Fresenius’ Journal of Analytical Chemistry, 350(4–5), 194–203. https://doi.org/10.1007/BF00322470.

Dżułyński S., 1951. Powstanie wapieni skalistych jury krakowskiej [The origin of the Upper Jurassic limestones in the Cracow area]. Rocznik Polskiego Towarzystwa Geologicznego, 21(2), 125–180.

Flörke O.W., Flörke U. & Giese U., 1984. Moganite, a new microcrystalline silica-mineral. Neues Jahrbuch für Mineralogie Abhandlungen, 149(3), 325–336.

Folk R.L. & Pittman J.S., 1971. Length-slow chalcedony: a new testament for vanished evaporites. Journal of Sedimentary Research, 41(4), 1045−1058. https://doi.org/10.1306/74D723F1-2B21-11D7-8648000102C1865D.

Gaillard C., 1983. Les biohermes à spongiaires et leur environment dans l’Oxfordian du Jura méridional. Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon, 90, 1–515.

Gao G.Q. & Land L.S., 1991. Nodular chert from the Arbuckle Group, Slick Hills, SW Oklahoma – a combined field, petrographic and isotopic study. Sedimentology, 38(5), 857–870. https://doi.org/10.1111/j.1365-3091.1991.tb01876.x.

Geeslin J.H. & Chafetz H.S., 1982. Ordovician Aleman ribbon cherts: An example of silicification prior to carbonate lithification. Journal of Sedimentary Petrology, 52(4), 1283–1293. https://doi.org/10.1306/212F811B-2B24-11D7-8648000102C1865D.

German C.R., Klinkhammer G.P., Edmond J.M., Mitra A. & Elderfield H., 1990. Hydrothermal scavenging of rare earth elements in the ocean. Nature, 345(6275), 516–518. https://doi.org/10.1038/345516a0.

German C.R., Hergt J., Palmer M.R. & Edmond J.M., 1999. Geochemistry of hydrothermal sediment core from the OBS vent field, 21°N East Pacific rise. Chemical Geology, 155(1–2), 65–75. https://doi.org/10.1016/S0009-2541(98)00141-7.

Górecka E. & Zapaśnik T., 1981. Dolomity epigenetyczne w utworach górnojurajskich monokliny śląsko-krakowskiej [Epigenetic dolomites in Upper Jurassic rocks in the Silesian-Cracow Monocline]. Przegląd Geologiczny, 29(10), 529–532.

Grawunder A., Merten D. & Büchel G., 2014. Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environmental Science and Pollution Research, 21(11), 6812–6823. https://doi.org/10.1007/s11356-013-2107-x.

Grätsch H.A. & Grünberg J.M., 2012. Microstructure of flint and other chert raw materials. Archaeometry, 54(1), 18–36. https://doi.org/10.1111/j.1475-4754.2011.00610.x.

Gwinner M.P., 1976. Origin of the Upper Jurassic Limestones of the Swabian Alb (Southern Germany). Contributions to Sedimentary Geology, 5, E. Schweizerbart, Stuttgart.

Halbach M., Halbach P. & Lüders V., 2002. Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the Central Indian Ocean. Chemical Geology, 182(2–4), 357–375. https://doi.org/10.1016/S0009-2541(01)00323-0.

He J., Ding W., Huang W., Cao Z., Chen E., Dai P. & Zhang Y., 2019. Petrological, geochemical, and hydrothermal characteristics of Ordovician cherts in the southeastern Tarim Basin, NW China, and constraints on the origin of cherts and Permian tectonic evolution. Journal of Asian Earth Sciences, 170, 294−315. https://doi.org/10.1016/j.jseaes.2018.10.030.

Hein J.R. & Parrish J.T., 1987. Distribution of siliceous deposits in space and time. [in:] Hein J.R. (ed.), Siliceous Sedimentary Rock-hosted Ores and Petroleum, Van Nostrand Reinhold Co., New York, 10−57.

Heliasz Z., 1980. Sylifikacja wapieni w okolicach Julianki koło Częstochowy [Limestones silicifications in the Julianka area, near Częstochowa]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 383, Geologia, 4, 92–101.

Hesse R., 1989. Silica diagenesis: origin of inorganic and replacement cherts. Journal of Geology, 26(1−3), 253−284. https://doi.org/10.1016/0012-8252(89)90024-X.

Keupp H., Koch R. & Leinfelder R., 1990. Steuerungsprozesse der Entwicklung von Oberjura-Spongiolithen Süddeutschlands: Kenntnisstand, Probleme und Perspektiven. Facies, 23, 141–174. https://doi.org/10.1007/BF02536711.

Klein C. & Hurlbut C.S., Jr., 1985. Manual of Mineralogy (after James D. Dana). Wiley, New York.

Knauth L.P., 1992. Origin and diagenesis of cherts: An isotopic perspective. [in:] Clauer N. & Chaudhuri S. (eds.), Isotopic Signatures and Sedimentary Records, Lecture Notes in Earth Sciences, 43, Springer, Berlin, Heidelberg, 123−152. https://doi.org/10.1007/BFb0009863.

Knauth L.P. & Epstein S., 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimica et Cosmochimica Acta, 40(9), 1095−1108. https://doi.org/10.1016/0016-7037(76)90051-X.

Kochman A. & Matyszkiewicz J., 2013. Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland. Acta Geologica Polonica, 63(4), 681–696. https://doi.org/10.2478/agp-2013-0029.

Kochman A., Matyszkiewicz J. & Wasilewski M., 2020a. Siliceous rocks from the southern part of the Kraków-Częstochowa Upland (Southern Poland) as potential raw materials in the manufacture of stone tools – a characterization and possibilities of identification. Journal of Archaeological Science: Reports, 30, 102195. https://doi.org/10.1016/j.jasrep.2020.102195.

Kochman A., Kozłowski A. & Matyszkiewicz J., 2020b. Epigenetic siliceous rocks from the southern part of the Kraków-Częstochowa Upland (Southern Poland) and their relation to Upper Jurassic early diagenetic chert concretions. Sedimentary Geology, 401, 105636. https://doi.org/10.1016/ j.sedgeo.2020.105636.

Koronevich P.M., Rebinder B.B., 1913. Geologicheskiye issledovaniya vdol’ linii Gerby-Keletskoy zheleznoy dorogi na uchastke Gerby-Konetspol’ v 1909-11 gg. Izvestiya Geologicheskogo Komiteta, 32, 938−1127 [Короневич П.М. & Ребиндер Б.Б., 1913. Геологические исследования вдоль линии Гербы-Келецкой железной дороги на участке Гербы-Конецполь в 1909-11 гг. Известия Геологического Комитета, 32, 938−1127].

Krajewski M. & Olchowy P., 2023. The role of the microencruster-microbial reef-building consortium in organic reefs evolution (Late Jurassic, northern Tethys shelf, southern Poland). Facies, 69, 4. https://doi.org/10.1007/s10347-023-00660-z.

Kutek J., Wierzbowski A., Bednarek J., Matyja B.A. & Zapaśnik T., 1977. Z problematyki stratygraficznej osadów górnojurajskich Jury Polskiej [Notes on the Upper Jurassic stratigraphy in the Polish Jura Chain]. Przegląd Geologiczny, 25(8–9), 438−445.

Lawrence M.J.F., 1994. Conceptual model for early diagenetic chert and dolomite, Amuri Limestone Group, north-eastern South Island, New Zeland. Sedimentology, 41(3), 479–498. https://doi.org/10.1111/j.1365-3091.1994.tb02007.x.

Lei Z., Dashtgard S., Wang J., Li M., Feng Q., Yu Q., Zhao A. & Du L., 2019. Origin of chert in Lower Silurian Longmaxi Formation: Implications for tectonic evolution of Yangtze Block, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 529(1), 53–66. https://doi.org/10.1016/j.palaeo.2019.05.017.

Leinfelder R.R., Krautter M., Laternser R., Nose M., Schmid D.U., Schweigert G., Werner W. et al., 1994. The origin of Jurassic reefs: Current research developments and results. Facies, 31, 1–56. https://doi.org/10.1007/BF02536932.

Liedmann W., 1992. Diagenetische Entwicklung süddeutscher Malmkarbonate: unter Berücksichtigung lumineszenzpetrographischer, fluid inclusion und geochemischer Untersuchungsmethoden. Universität, Heidelberg [PhD thesis, unpublished].

Lin L., Yu Y., Gao J. & Hong W., 2018. The origin and geochemical characteristics of Permian chert in the Eastern Sichuan Basin, China. Carbonates and Evaporites, 33(4), 613–624. https://doi.org/10.1007/s13146-017-0372-3.

Maliva R.G. & Siever R., 1989. Nodular chert formation in carbonate rocks. Journal of Geology, 97(4), 421–433. https://www.jstor.org/stable/30078348.

Marcinowski R., 1970. Turbidites in the Upper Oxfordian limestones at Jaskrów in the Polish Jura Chain. Bulletin of the Polish Academy of Sciences, Earth Sciences, 18(4), 219–225.

Matyja B.A. & Wierzbowski A., 2004. Stratygrafia i zróżnicowanie facjalne utworów górnej jury Wyżyny Krakowsko-Częstochowskiej i Wyżyny Wieluńskiej [Stratigraphy and facies development in the Upper Jurassic of the Kraków-Częstochowa Upland and the Wieluń Upland]. [in:] Partyka J. (red.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny KrakowskoCzęstochowskiej. Tom 1: Przyroda, Ojcowski Park Narodowy, Ojców, 13–26.

Matyja B.A. & Wierzbowski A., 2006. Julianka, coral colonization of the cyanobacteria-sponge bioherms at the turn of the Oxfordian and Kimmeridgian. [in:] Wierzbowski A., Aubrecht A., Golonka J., Gutowski J., Krobicki M., Matyja B.A., Pieńkowski G. & Uchman A. (eds.), Jurassic of Poland and Adjacent Slovakian Carpathians: Field Trip Guidebook of 7th International Congress on the Jurassic System: Poland, Kraków, September 6–18, 2006, Polish Geological Institute, Warszawa, 203–206.

Matyszkiewicz J., 1987. Epigenetic silification of the Upper Oxfordian limestones in the vicinity of Kraków. Annales Societatis Geologorum Poloniae, 57(1–2), 59−87.

Matyszkiewicz J., 1989. Sedimentation and diagenesis of the Upper Oxfordian cyanobacterial-sponge limestones in Piekary near Kraków. Annales Societatis Geologorum Poloniae, 59(1–2), 201–232.

Matyszkiewicz J., 1996. The significance of Saccocoma-calciturbidites for the analysis of the Polish epicontinental Late Jurassic Basin: An example from the Southern Cracow-Wielun Upland (Poland). Facies, 34, 23−40. https://doi.org/10.1007/BF02546155.

Matyszkiewicz J., 1997. Microfacies, Sedimentation and Some Aspects of Diagenesis of Upper Jurassic Sediments from the Elevated Part of the Northern Peri-Tethyan Shelf: A Comparative Study on the Lochen Area (Schwäbische Alb) and the Cracow Area (Cracow-Wielun Upland, Polen). Berliner geowissenschaftliche Abhandlungen, E21, Selbstverlag Fachbereich Geowissenschaften, Berlin.

Matyszkiewicz J., 1999. Sea-bottom relief versus differential compaction in ancient platform carbonates: a critical reassessment of an example from Upper Jurassic of the Cracow-Wieluń Upland. Annales Societatis Geologorum Poloniae, 69(1–2), 63–79.

Matyszkiewicz J. & Kochman A., 2016. Pressure dissolution features in Oxfordian microbial-sponge buildups with pseudonodular texture, Kraków Upland, Poland. Annales Societatis Geologorum Poloniae, 86(4), 355–377. https://doi.org/10.14241/asgp.2016.008.

Matyszkiewicz J. & Kochman A., 2020. The provenance of siliceous rocks from the Kraków-Częstochowa Upland (Poland) used as raw-materials in the manufacture of siliceous artefacts from Central-Eastern Europe; An old problem in new light. Journal of Archaeological Science: Reports, 34(A), 102600. https://doi.org/10.1016/j.jasrep.2020.102600.

Matyszkiewicz J., Kochman A., Rzepa G., Gołębiowska B., Krajewski M., Gaidzik K. & Żaba J., 2015. Epigenetic silicification of the Upper Oxfordian limestones in the Sokole Hills (Kraków-Częstochowa Upland): relationship to facies development and tectonics. Acta Geologica Polonica, 65(2), 181−203. https://doi.org/10.1515/agp-2015-0007.

Matyszkiewicz J., Krajewski M., Kochman A., Kozłowski A. & Duliński M., 2016. Oxfordian neptunian dykes with brachiopods from the southern part of the Kraków-Częstochowa Upland (Southern Poland) and their links to hydrothermal vents. Facies, 62, 12. https://doi.org/10.1007/s10347-016-0464-x.

McLennan S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. [in:] Lipin R. & McKay G.A. (eds.), Geochemistry and Mineralogy of Rare Earth Elements, Reviews in Mineralogy & Geochemistry, 21, De Gruyter, Berlin, Boston, 169–200. https://doi.org/10.1515/9781501509032-010.

Michard A., 1989. Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta, 53(3), 745–750. https://doi.org/10.1016/ 0016-7037(89)90017-3.

Miehe G., Grätsch H. & Flörke O.W., 1984. Crystal structure and growth of fabric of length-fast chalcedony. Physics and Chemistry of Minerals, 10, 197–199. https://doi.org/10.1007/BF00309311.

Migaszewski Z.M., Gałuszka A., Durakiewicz T. & Starnawska E., 2006. Middle Oxfordian – Lower Kimmeridgian chert nodules in the Holy Cross Mountains, south-central Poland. Sedimentary Geology, 187(1), 11–28. https://doi.org/10.1016/j.sedgeo.2005.12.003.

Migaszewski Z.M., Gałuszka A. & Dołęgowska S., 2016. Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland. Environmental Science and Pollution Research, 23(24), 24943–24959. https://doi.org/10.1007/s11356-016-7713-y.

Migaszewski Z.M., Gałuszka A. & Migaszewski A., 2022. Geochemistry and petrology of striped chert as a provenance tool for artefacts from the Krzemionki Neolithic mining area (Poland). Archaeometry, 64(5), 1093–1109. https://doi.org/10.1111/arcm.12778.

Murata K.J. & Norman M.B., 1976. An index of crystallinity for quartz. American Journal of Science, 276(9), 1120−1130. https://doi.org/10.2475/ ajs.276.9.1120.

Murray R.W., 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90(3−4), 213–232. https://doi.org/10.1016/0037-0738(94)90039-6.

Murray R.W., Buchholtz Ten Brink M.R., Gerlach D.C., Russ III G.P. & Jones D.L., 1992. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: assessing the influence of chemical fractionation during diagenesis. Geochimica et Cosmochimica Acta, 56(7), 2657–2671. https://doi.org/10.1016/0016-7037(92)90351-I.

Neuweiler F., Larmagnat S., Molson J. & Fortin-Morin F., 2014. Sponge spicules, silicification, and sequence stratigraphy. Journal of Sedimentary Research, 84(11), 1107−1119. https://doi.org/10.2110/jsr.2014.86.

Piper D.Z. & Bau M., 2013. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions. American Journal of Analytical Chemistry, 4(10A), 69−83. https://doi.org/10.4236/ajac.2013.410A1009.

Pratt B.R., 1982. Stromatolitic framework of carbonate mud-mounds. Journal of Sedimentary Petrology, 52(4), 1203–1227. https://doi.org/10.1306/212F80FD-2B24-11D7-8648000102C1865D.

Premik J., 1930. Sprawozdanie z badań geologicznych, dokonanych w roku 1929 na obszarze Kłobucka-Wręczycy, Rudnik (na NE od Częstochowy) i nad środkową Widawką. Posiedzenia Naukowe Państwowego Instytutu Geologicznego, 25, 26−32.

Premik J., 1934. Budowa i dzieje geologiczne okolic Częstochowy. Ziemia Częstochowska, 1, 256−266.

Premik J., 1937. Sprawozdanie z badań geologicznych wykonanych w r. 1936 na arkuszu Częstochowa oraz Woźniki. Posiedzenia Naukowe Państwowego Instytutu Geologicznego, 47, 13−15.

Qiu Z. & Wang Q.C., 2011. Geochemical evidence for submarine hydrothermal origin of the Middle-Upper Permian chert in Laibin of Guangxi, China. Science China Earth Sciences, 54(7), 1011–1023. https://doi.org/10.1007/s11430-011-4198-x.

Rajchel J.M., 1971. Badania sedymentologiczne krzemieni jurajskich pod Krakowem. Sprawozdania z Posiedzeń Komisji Naukowych Polskiej Akademii Nauk. Oddział w Krakowie, 14(2), 625–645.

Reinhold C., 1996. Prozesse, Steuerung und Produkte komplexer Diagenese-Sequenzen in süddeutschen Malm-Karbonaten. Technische Universität, Berlin [PhD thesis, unpublished].

Roemer F., 1870. Geologie von Oberschlesien. Robert Nischkowsky, Breslau.

Różycki S.Z., 1953. Górny dogger i dolny malm Jury Krakowsko-Częstochowskiej: (opis odsłonięć). Prace – Instytut Geologiczny, 17, Wydawnictwa Geologiczne, Warszawa.

Różycki S.Z., 1960. Czwartorzęd regionu Jury Krakowsko-Częstochowskiej i sąsiadujących z nią obszarów [Quaternary of the Częstochowa Jura Chain and the adjacent areas]. Przegląd Geologiczny, 8, 424–429.

Rühle E., Ciuk E., Osika R. & Znosko J., 1977. Mapa geologiczna Polski bez utworów czwartorzędowych: 1:500 000 [Geological map of Poland without Quaternary formations, scale 1: 500 000]. Wydawnictwa Geologiczne, Warszawa.

Sharp Z.D., Durakiewicz T., Migaszewski Z.M. & Atudorei V.N., 2002. Antiphase hydrogen and oxygen isotope periodicity in chert nodules. Geochimica et Cosmochimica Acta, 66(16), 2865−2973. https://doi.org/10.1016/S0016-7037(02)00873-6.

Shen B., Ma H., Ye H., Lang X., Pei H., Zhou C., Zhang S. & Yang R., 2018. Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: Implications for the evolution of Mesoproterozoic cratonic basin, North China. Precambrian Research, 310, 213−228. https://doi.org/10.1016/j.precamres.2018.03.007.

Smoleńska A., 1983a. Wykształcenie litologiczne górnojurajskich wapieni mikrytowych rejonów Działoszyna i Rudnik [Lithology of the Upper Jurassic micritic limestones region of Działoszyn and Rudniki]. Zeszyty Naukowe AGH, Geologia, 9(1), 39–66.

Smoleńska A., 1983b. Biohermowe wapienie gąbkowe okolic Częstochowy i Rudnik [Biohermal, spongy limestones from the vicinity of Częstochowa and Rudniki]. Zeszyty Naukowe AGH, Geologia, 9(3), 47–60.

Sugisaki R., 1984. Relation between chemical composition and sedimentation rate of Pacific Ocean-floor sediments deposited since the Middle Cretaceous: Basic evidence for chemical constraints on depositional environments of ancient sediments. The Journal of Geology, 92(3), 235−259. https://www.jstor.org/stable/30069398.

Świerczewska A., 1990. Sylifikacja diagenetyczna w wapieniach jurajskich Jury Krakowsko-Wieluńskiej. Polish Academy of Sciences, Warszawa [PhD thesis, unpublished].

Świerczewska A., 1997. Early diagenetic silicification in the Upper Jurassic biohermal and interbiohermal facies. [in:] Schild R. & Sulgostkowska Z. (eds.), Man and flint: Proceedings of the VIIth International Flint Symposium Warszawa – Ostrowiec Świętokrzyski, September 1995, Institute of Archaeology and Ethnology Polish Academy of Sciences, Warszawa, 357−361.

Thomson J., Jarvis I., Green D.R.H., Green D.A. & Clayton T., 1998. Mobility and immobility of redox-sensitive elements in deep-sea turbidites during shallow burial. Geochimica et Cosmochimica Acta, 62(4), 643−656. https://doi.org/10.1016/S0016-7037(97)00378-5.

Trammer J., 1982. Lower to Middle Oxfordian sponges of the Polish Jura. Acta Geologica Polonica, 32, 1–39.

Wang J., Chen D., Wang D., Yan D., Zhou X. & Wang Q., 2012. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran-Cambrian Transition. Sedimentology, 59(3), 809–829. https://doi.org/10.1111/j.1365-3091.2011.01280.x.

Wierzbowski A., 1965. Problem granicy oksford-kimeryd w północnej części Jury Krakowsko-Częstochowskiej. Annales Societatis Geologorum Poloniae, 35(2), 291−300.

Wierzbowski A., 1966. Górny oksford i dolny kimeryd Wyżyny Wieluńskiej. Acta Geologica Polonica, 16(2), 127−200.

Wiśniewska-Żelichowska M., 1932. Les Rhynchonellidés du Jurassique supérieur de Pologne. Palaeontologia Polonica, 2(1), 1−71.

Wiśniewska-Żelichowska M., 1971. Fauna bioherm jurajskich w Rudnikach pod Częstochową. [in:] Z badań geologicznych regionu śląsko-krakowskiego, 11, Biuletyn – Instytut Geologiczny, 243, Wydawnictwa Geologiczne, Warszawa, 5–63.

Yamamoto K., 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1–2), 65–108. https://doi.org/10.1016/0037-0738(87)90017-0.

Yu Y., Lin L., Deng X., Wang Y., Li Y. & Guo Y., 2019. Geochemical features of the Middle–Upper Permian cherts and implications for origin, depositional environment in the Sichuan Basin, SW China. Geological Journal, 55(2), 1493–1506. https://doi.org/10.1002/gj.3511.

Zhang M. & Moxon T., 2014. Infrared absorption spectroscopy of SiO2-moganite. American Mineralogist, 99(4), 671–680. https://doi.org/10.2138/am.2014.4589.

Zhou Y., Chown E.H., Guha J., Lu H. & Tu G., 1994. Hydrothermal origin of Late Proterozoic bedded chert at Gusui, Guangdong, China: petrological and geochemical evidence. Sedimentology, 41(3), 605–619. https://doi.org/10.1111/j.1365-3091.1994.tb02013.x.

Zijlstra H.J., 1987. Early diagenetic silica precipitation, in relation to redox boundaries and bacterial metabolism, in Late Cretaceous chalk of the Maastrichtian type locality. Geologie en Mijnbouw, 66, 343–355.

Downloads

Published

2023-09-01

How to Cite

Kochman, A., & Matyszkiewicz, J. (2023). The development and origin of the two-stage silicification of Upper Jurassic limestones from the northern part of the Kraków-Częstochowa Upland (Southern Poland). Geology, Geophysics and Environment, 49(3), 225–243. https://doi.org/10.7494/geol.2023.49.3.225

Issue

Section

Articles