Triggers of present-day rockfalls in the zone of sporadic permafrost in non-glaciated mountain region: the case study of Turnia Kurczaba (the Tatra Mts., Poland)
DOI:
https://doi.org/10.7494/geol.2024.50.1.23Keywords:
rockfall, natural hazards, high mountains, impact of climate change, Tatra Mts.Abstract
In recent decades there has been growing evidence of the impact of ongoing climate warming on the frequency of rockfalls. However, these are not adequately documented, especially in non-glaciated, high mountain regions of middle latitude. This study comprehensively documents the Turnia Kurczaba rockfall, one of the most significant rockfalls recorded in recent decades in the Tatra Mountains. The precise projections of the volumes and distribution of rock losses and deposits, the determination of the trajectories, modes and speeds of movement of rock material, as well as information on the geological, morphological, and meteorological conditions behind the Turnia Kurczaba rockfall form a unique dataset. The data documents a spectacular episode in the contemporary development of a complex slope system in the Tatras in an all-encompassing way and can be used to validate and calibrate existing models and improve numerical simulations of other rockfalls, both for hazard and risk assessment and slope evolution studies. Moreover, in the context of archival data, they demonstrate that in the Tatra sporadic permafrost zone, only relatively small rockfalls have been recorded in recent decades. Their cause was not the degradation of permafrost but freeze-thaw processes with the co-participation of rainwater and meltwater. The largest of these occur within densely fractured cataclysites, mylonites, and fault breccias. The impact of rockfalls on the morphodynamics of talus slopes is uneven in the storied arranged rock-talus slope systems. Even colluviums belonging to the same slope system can differ in their development rate and regime, and different thermal and wetness drivers can control their evolution.
Downloads
References
Allen S.K., Cox S.C. & Owens I.F., 2011. Rock avalanches and other landslides in the central Southern Alps of New Zealand: A regional study considering possible climate change impacts. Landslides, 8(1), 33–48. https://doi.org/10.1007/s10346-010-0222-z.
Allen S. & Huggel Ch., 2013. Extremely warm temperatures as a potential cause of recent high mountain rockfall. Global and Planetary Change, 107, 59–69. https://doi.org/10.1016/j.gloplacha.2013.04.007.
Azzoni A., La Barbera G. & Zaninetti A., 1995. Analysis and prediction of rockfalls using a mathematical model. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(7), 709–724. https://doi.org/10.1016/0148-9062(95)00018-C.
Ballantyne C.K., 2002. Paraglacial geomorphology. Quarternary Science Reviews, 21(18–19), 1935–2017. https://doi.org/10.1016/S0277-3791(02)00005-7.
Bartelt P., Bieler C., Buehler Y., Christen M., Christen M., Dreier L., Gerber W., Glover J., Schneider M., Glocker C., Leine R. & Schweizer A., 2016. RAMMS User Manual v1.6 Rockfall. https://ramms.slf.ch/ramms/downloads/RAMMS_ROCK_Manual.pdf [access: 30.03.2023].
Barth N.C., 2013. The Cascade rock avalanche: Implications of a very large Alpine Fault-triggered failure, New Zealand. Landslides, 11(3), 327–341. https://doi.org/10.1007/s10346-013-0389-1.
Braathen A., Blikra L.H., Berg S.S. & Karlsen F., 2004. Rock-slope failures in Norway: type, geometry and deformation mechanisms and stability. Norwegian Journal of Geology/Norsk Geologisk Forening, 84(1), 67–88.
Choiński A. & Pociask-Karteczka J. (red.), 2014. Morskie Oko: przyroda i człowiek. Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane.
Corominas J., Copons R., Moyá J., Vilaplana J.M., Altimir J. & Amigo J., 2005. Quantitative assessment of the residual risk in a rockfall protected area. Landslides, 2(4), 343–357. https://doi.org/10.1007/s10346-005-0022-z.
Cox S.C., Stirling M.W., Herman F., Gerstenberger M. & Ristau J., 2012. Potentially active faults in the rapidly eroding landscape adjacent to the Alpine Fault, central Southern Alps, New Zealand. Tectonics, 31(2), TC2011. https://doi.org/10.1029/2011TC003038.
Crosta G.B. & Agliardi F., 2004. Parametric evaluation of 3D dispersion of rockfall trajectories. Natural Hazards and Earth System Science, 4(4), 583–598. https://doi.org/10.5194/nhess-4-583-2004.
Crosta G.B., Chen H. & Lee C.F., 2004. Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology, 60(1–2), 127–146. https://doi.org/10.1016/j.geomorph.2003.07.015.
Crosta G.B., Agliardi F., Frattini P. & Lari S., 2015. Key issues in rock fall modelling, hazard and risk assessment for rockfall protection. [in:] Lollino G., Giordan D., Crosta G.B., Corominas J., Azzam R., Wasowski J. & Sciarra N. (eds.), Engineering Geology for Society and Territory. Volume 2: Landslide Processes, Springer, Cham, 43–58. https://doi.org/10.1007/978-3-319-09057-3_4.
Cruden D.M. & Varnes D.J., 1996. Landslide types and processes. [in:] Turner A.K. & Schuster R.L. (eds.), Landslides: Investigation and Mitigation. Transportation Research Board, Special Report 247 National Academy Press, Washington, 36–75.
Deline P., 2001. Recent Brenva rock avalanches (Valley of Aosta): New chapter in an old story? Supplemento Geografia Fisica e Dinamica Quaternaria, 5, 55–63.
Deparis J., Jongmans D., Cotton F., Baillet L., Thouvenot F. & Hantz D., 2008. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps. Bulletin of the Seismological Society of America, 98(4), 1781–1796. https://doi.org/10.1785/0120070082.
Dobiński W., 1998. Permafrost occurrences in the alpine zone of the Tatra Mountains, Poland. [in:] Lewkowicz A.G. & Allard M. (eds.), Permafrost: Seventh International Conference, June 23–27, 1998: Proceedings, Yellowknife, Centre d'études nordiques, Université Laval, Québec, 231–237.
Dobiński W., 2005. Permafrost of the Carpathian and Balkan Mountains, eastern and southeastern Europe. Permafrost and Periglacial Processes, 16(4), 395–398. https://doi.org/10.1002/ppp.524.
Dorren L.K.A., Domaas U., Kronholm K., & Labiouse V., 2013. Methods for predicting rockfall trajectories and run-out zones. [in:] Lambert S. & Nicot F. (eds.), Rockfall Engineering, John Wiley & Sons Inc., 143–173.
Eberhardt E., 2006. From cause to effect: using numerical modelling to understand rock slope instability mechanisms. [in:] Evans S.G., Scarascia-Mugnozza G., Strom A.L. & Hermanns R.L. (eds.), Landslides from Massive Rock Slope Failure, NATO Science Series, 49, Springer, Dordrecht, 85–101. https://doi.org/10.1007/978-1-4020-4037-5_4.
Evans S.G. & Hungr O., 1993. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30(4), 620–636. https://doi.org/10.1139/t93-054.
Evans S.G., Scarascia-Mugnozza G., Strom A.L., Hermanns R.L., Ischuk A. & Vinnichenko S., 2006. Landslides from massive rock slope failure and associated phenomena. [in:] Evans S.G., Scarascia-Mugnozza G., Strom A.L. & Hermanns R.L. (eds.), Landslides from Massive Rock Slope Failure, NATO Science Series, 49, Springer, Dordrecht, 3–52. https://doi.org/10.1007/978-1-4020-4037-5_1.
Fischer L., Kaäb A., Huggel C. & Noetzli J., 2006. Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Natural Hazards and Earth System Science, 6(5), 761–772. https://doi.org/10.5194/nhess-6-761-2006.
Fischer L., Purves R.S., Huggel C., Noetzli J. & Haeberli W., 2012. On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Natural Hazards and Earth System Science, 12(1), 241–254. https://doi.org/10.5194/nhess-12-241-2012.
Fischer L., Huggel C., Kääb A. & Haeberli W., 2013. Slope failures and erosion rates on a glacierized high‐mountain face under climatic changes. Earth Surface Processes and Landforms, 38(8), 836–846. https://doi.org/10.1002/esp.3355.
Frattini P., Crosta G., Carrara A. & Agliardi F., 2008. Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology, 94(3–4), 419–437. https://doi.org/10.1016/j.geomorph.2006.10.037.
Gądek B. & Leszkiewicz J., 2012. Impact of climate warming on the ground surface temperature in the sporadic permafrost zone of the Tatra Mountains, Poland and Slovakia. Cold Regions Science and Technology, 79–80, 75–83. https://doi.org/10.1016/j.coldregions.2012.03.006.
Gądek B. & Szypuła B., 2015. Contemporary cryosphere. [in:] Dąbrowska K. & Guzik M. (eds.), Atlas of the Tatra Mountains: Abiotic Nature [sheet V.1, map 3, scale 1: 250 000], Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane.
Gądek B., Rączkowska Z. & Żogała B., 2009. Debris slope morphodynamics as a permafrost indicator in zone of sporadic permafrost, High Tatras, Slovakia. Zeitschrift für Geomorphologie, 53(suppl. 2), 79–100. https://doi.org/10.1127/0372-8854/2009/0053S3-0079.
Gądek B., Grabiec M., Kędzia S. & Rączkowska Z., 2016. Reflection of climate changes in the structure and morphodynamics of talus slopes (the Tatra Mountains, Poland). Geomorphology, 263, 39–49.
Gądek B., Kajdas J. & Krawiec K., 2023. Contemporary degradation of steep rock slopes in the periglacial zone of the Tatra Mts., Poland. Geographia Polonica, 96(1), 53–68. https://doi.org/10.7163/GPol.0245.
Geertsema M., Clague J.J., Schwab J.W. & Evans S.G., 2006. An overview of recent large catastrophic landslides in northern British Columbia, Canada. Engineering Geology, 83(1–3), 120–143. https://doi.org/10.1016/j.enggeo.2005.06.028.
Giani G.P., Giacomini A., Migliazza M. & Segalini A., 2004. Experimental and theoretical studies to improve rock fall analysis and protection work design. Rock Mechanics and Rock Engineering, 37(5), 369–389. https://doi.org/10.1007/s00603-004-0027-2.
Gruber S. & Haeberli W., 2007. Permafrost in steep bedrock and its temperature-related destabilization following climate change. Journal of Geophysical Research: Earth Surface, 112(2), F02S18. https://doi.org/10.1029/2006JF000547.
Gruber S., Hoelzle M. & Haeberli W., 2004. Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31(13), L13504. https://doi.org/10.1029/2004GL020051.
Gunzburger Y., Merrien-Soukatchoff V. & Guglielmi Y., 2005. Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). International Journal of Rock Mechanics and Mining Sciences, 42(3), 331–349. https://doi.org/10.1016/j.ijrmms.2004.11.003.
Haeberli W., Huggel C., Kääb A., Zgraggen-Oswald S., Polkvoj A., Galushkin I. & Osokin N., 2004. The Kolka-Karmadon rock/ice slide of 20 September 2002: An extraordinary event of historical dimensions in North Ossetia, Russian Caucasus. Journal of Glaciology, 50(171), 533–546. https://doi.org/10.3189/172756504781829710.
Harris C., Arenson L.U., Christiansen H.H., Etzelmüller B., Frauenfelder R., Gruber S., Haeberli W., Hauck C., Holzle M., Humlum O., Isaksen K., Kääb A., Kern-Lutschg M.A., Lehning M., Matsuoka N., Murton J.B., Notzli J., Phillips M., Ross N., …, Vonder Mühll D., 2009. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews, 92(3–4), 117–171. https://doi.org/10.1016/j.earscirev.2008.12.002.
Hendrickx H., De Sloover L., Stal C., Delaloye R., Nyssen J. & Frankl A., 2020. Talus slope geomorphology investigated at multiple time scales from high‐resolution topographic surveys and historical aerial photographs (Sanetsch Pass, Switzerland). Earth Surface Processes and Landforms, 45, 3653–3669. https://doi.org/10.1002/esp.4989.
Hermanns R.L., 2013. Rock Avalanche (Sturzstrom). [in:] Bobrowsky P.T. (ed.), Encyclopedia of Natural Hazards, Encyclopedia of Earth Sciences Series, Springer, Dordrecht, 875–899. https://doi.org/10.1007/978-1-4020-4399-4_301.
Hungr O., Leroueil S. & Picarelli L., 2014. The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194. https://doi.org/10.1007/s10346-013-0436-y.
Jaboyedoff M., Dudt J.P. & Labiouse V., 2005. An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Natural Hazards and Earth System Sciences, 5(5), 621–632. https://doi.org/10.5194/nhess-5-621-2005.
Kargel J.S., Leonard G.J., Shugar D.H., Haritashya U.K., Bevington A., Fielding E.J., Fujita K., Geertsema M., Miles E.S., Steiner J., Anderson E., Bajracharya S., Bawden G.W., Breashears D.F., Byers A., Collins B., Dhital M.R., Donnellan A., Evans T.L., …, Young N., 2016. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science, 351(6269), aac8353. https://doi.org/10.1126/science.aac8353.
Kenner R., 2019. Mass wasting processes affecting the surface of an alpine talus slope: Annual sediment budgets 2009–2018 at Flüelapass, eastern Swiss Alps. Land Degradation & Development, 31(4), 451–462. https://doi.org/10.1002/ldr.3462.
Klimaszewski M., 1988. Rzeźba Tatr Polskich. Państwowe Wydawnictwo Naukowe, Warszawa.
Knoflach B., Tussetschläger H., Sailer R., Meißl G. & Stötter J., 2021. High mountain rockfall dynamics: rockfall activity and runout assessment under the aspect of a changing cryosphere. Geografiska Annaler, Series A: Physical Geography, 103(1), 83–102. https://doi.org/10.1080/04353676.2020.1864947.
Kobayashi Y., Harp E.L. & Kagawa T., 1990. Simulation of rock-falls triggered by earthquakes. Rock Mechanics and Rock Engineering, 23, 1–20. https://doi.org/10.1007/BF01020418.
Korup O., 2004. Geomorphic implications of fault zone weakening: Slope instability along the Alpine Fault, South Westland to Fiordland. New Zealand Journal of Geology and Geophysics, 47(2), 257–267. https://doi.org/10.1080/00288306.2004.9515052.
Kotarba A., 2004. Zdarzenia geomorfologiczne w Tatrach Wysokich podczas małej epoki lodowej. [in] Kotarba A. (red.), Rola małej epoki lodowej w przekształcaniu środowiska przyrodniczego Tatr, Prace Geograficzne – Polska Akademia Nauk. Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego, 197, IGiPZ PAN, Warszawa, 9–55.
Kotarba A. & Pech P., 2002. The recent evolution of talus slopes in the High Tatra Mountains (with the Pańszczyca valley as example). Studia Geomorphologica Carpatho-Balcanica, 36, 69–76.
Kotarba A., Kaszowski L. & Krzemien K., 1987. High-mountain denudational system of the Polish Tatra Mountains. Geographical Studies – Polish Academy of Sciences. Institute of Geography & Spacial Organization, Special Issue, 3, Ossolineum, Wrocław.
Liszkowski J. & Stochlak J. (red.), 1976. Szczelinowatość masywów skalnych. Wydawnictwa Geologiczne, Warszawa.
Luethi R., Gruber S. & Ravanel L., 2015. Modelling transient ground surface temperatures of past rockfall events: Towards a better understanding of failure mechanisms in changing periglacial environments. Geografiska Annaler, Series A: Physical Geography, 97(4), 753–767. https://doi.org/10.1111/geoa.12114.
Łupikasza E. & Małarzewski Ł., 2023. Trends in the indices of precipitation phases under current warming in Poland, 1966–2020. Advances in Climate Change Research, 14(1), 97–115. https://doi.org/10.1016/j.accre.2022.11.012.
Łupikasza E. & Szypuła B., 2019. Vertical climatic belts in the Tatra Mountains in the light of current climate change. Theoretical and Applied Climatology, 136(1–2), 249–264. https://doi.org/10.1007/s00704-018-2489-2.
Mainieri R., Eckert N., Corona C., Lopez-Saez J., Stoffel M., & Bourrier F., 2023. Limited impacts of global warming on rockfall activity at low elevations: Insights from two calcareous cliffs from the French Prealps. Progress in Physical Geography: Earth and Environment, 47(1), 50–73. https://doi.org/10.1177/03091333221107624.
Mair D., Lechmann A., Delunel R., Yeşilyurt S., Tikhomirov D., Vockenhuber Ch., Christl M., Akçar N. & Schlunegger F., 2020. The role of frost cracking in local denudation of steep Alpine headwalls over millennia (Mt. Eiger, Switzerland). Earth Surface Dynamics, 8(3), 637–659. https://doi.org/10.5194/esurf-2019-56.
McColl S.T., 2012. Paraglacial rock-slope stability. Geomorphology, 153–154, 1–16. https://doi.org/10.1016/j.geomorph.2012.02.015.
Mościcki J.W. & Kędzia S., 2001. Investigation of mountain permafrost in the Kozia Dolinka valley, Tatra Mountains, Poland. Norsk Geografisk Tidsskrift, 55(4), 235–240. https://doi.org/10.1080/00291950152746586.
Niedźwiedź T., 1992. Climate of the Tatra Mountains. Mountain Research & Development, 12(2), 131–146. https://doi.org/10.2307/3673787.
Niedźwiedź T., Łupikasza E., Pińskwar I., Kundzewicz Z.W., Stoffel M. & Małarzewski Ł., 2015. Variability of high rainfalls and related synoptic situations causing heavy floods at the northern foothills of the Tatra Mountains. Theorethical Applied Climatology, 119, 273–284. https://doi.org/10.1007/s00704-014-1108-0.
Niezgoda A. & Nowacki M., 2020. Experiencing nature: physical activity, beauty and tension in Tatra National Park – analysis of tripadvisor reviews. Sustainability, 12(2), 601. https://doi.org/10.3390/su12020601.
Noetzli J., Hoelzle M. & Haeberli W., 2003. Mountain permafrost and recent Alpine rock-fall events: A GIS-based approach to determine critical factors. [in:] Phillips M., Springman S.M. & Lukas U. (eds.), Permafrost: Proceedings of the Eighth International Conference on Permafrost, 21–25 July 2003, Zurich, Switzerland. Vol. 2, A.A. Balkema, Lisse, The Netherlands, 827–832.
Nyka J., 1956. Dolina Rybiego Potoku (Morskiego Oka): Monografia krajoznawcza. Sport i Turystyka, Warszawa.
Oppikofer T., Jaboyedoff M. & Keusen H.R., 2008. Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience, 1(8), 531–535. https://doi.org/10.1038/ngeo258.
Pánek T., Engel Z., Mentlík P., Braucher R., Břežný M., Škarpich V. & Zondervan A., 2016. Cosmogenic age constraints on post-LGM catastrophic rock slope failures in the Tatra Mountains (Western Carpathians). Catena, 138, 52–67. https://doi.org/10.1016/j.catena.2015.11.005.
Paranunzio R., Laio F., Chiarle M., Nigrelli G. & Guzzetti F., 2016. Climate anomalies associated with the occurrence of rock falls at high-elevation in the Italian Alps. Natural Hazards and Earth System Sciences, 16(9), 2085–2106. https://doi.org/10.5194/nhess-16-2085-2016.
Paranunzio R., Chiarle M., Laio F., Nigrelli G., Turconi L. & Luino F., 2019. New insights in the relation between climate and slope failures at high-elevation sites. Theoretical and Applied Climatology, 137(3–4), 1765–1784. https://doi.org/10.1007/s00704-018-2673-4.
Piotrowska K., 1997. Cios, spękania ciosowe i uskoki w trzonie granitoidowym polskich Tatr Wysokich. Przegląd Geologiczny, 45(9), 904–907.
Piotrowska K., Danel W., Iwanow A., Gaździcka E., Rączkowski W., Bezák V., Maglay J., Polák M., Kohút M. & Gross P., 2015a. Geological map. [in:] Dąbrowska K. & Guzik M. (eds.), Atlas of the Tatra Mountains: Abiotic Nature [sheet IV.1, map 1, scale 1:100 000], Wydawnicwa Tatrzańskiego Parku Narodowego, Zakopane.
Piotrowska K., Danel W., Michalik M., Rączkowski W. & Borecka A., 2015b. Szczegółowa mapa geologiczna Tatr w skali 1:10 000: arkusz Mięguszowiecki Szczyt: M-34-101-A-c-3 Mięguszowiecki Szczyt. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
Rączkowska Z., 2006. Recent geomorphic hazards in the Tatra Mountains. Studia Geomorphologica Carpatho-Balcanica, 40, 45–60.
Rączkowska Z. & Cebulski J., 2022. Quantitative assessment of the complexity of talus slope morphodynamics using multi-temporal data from terrestrial laser scanning (Tatra Mts., Poland). Catena, 209 (part 1), 105792. https://doi.org/10.1016/j.catena.2021.105792.
Rączkowska Z., Cebulski J., Rączkowski W., Wojciechowski T. & Perski Z., 2018. Using TLS for monitoring talus slope morphodynamics in the Tatra Mts. Studia Geomorphologica Carpatho-Balcanica, 51–52, 179–198.
Rączkowski W., Boltižiar M. & Rączkowska Z., 2015. Relief. [in:] Dąbrowska K. & Guzik M. (eds.), Atlas of the Tatra Mountains: Abiotic Nature [sheet V.1, map 1, scale 1:100 000], Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane.
Ravanel L., Allignol F., Deline P., Gruber S. & Ravello M., 2010. Rock falls in the Mont Blanc Massif in 2007 and 2008. Landslides, 7(4), 493–501. https://doi.org/10.1007/s10346-010-0206-z.
Ravanel L., Magnin F. & Deline P., 2017. Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Science of The Total Environment, 609, 132–143. https://doi.org/10.1016/j.scitotenv.2017.07.055.
Rochet L., 1987. Application des modèles numériques de propagation a l’étude des éboulements rocheux. Bulletin des Laboratoire des Ponts et Chaussées, 150/151, 84–95.
Sala G., Lanfranconi C., Valagussa A., Frattini P. & Crosta G.B., 2020. The role of climate factors on rock fall occurrence in the Central Italian Alps. [in:] SCG-XIII International Symposium on Landslides, Cartagena, Colombia – June 15th–19th 2020. https://www.issmge.org/uploads/publications/105/106/ISL2020-12.pdf [access: 30.03.2023].
Sass O. & Oberlechner M., 2012. Is climate change causing increased rockfall frequency in Austria? Natural Hazards and Earth System Science, 12(11), 3209–3216. https://doi.org/10.5194/nhess-12-3209-2012.
Savi S., Comiti F. & Strecker M.R., 2020. Pronounced increase in slope instability linked to global warming: A case study from the eastern European Alps. Earth Surface Processes and Landforms, 46(7), 1328–1347. https://doi.org/10.1002/esp.5100.
Schlögel R., Kofler C., Gariano S.L., Van Campenhout J. & Plummer S., 2020. Changes in climate patterns and their association to natural hazard distribution in South Tyrol (Eastern Italian Alps). Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-61615-w.
Sobiecki K., 2015. „Jedna ściana – trzy drogi” – Mięguszowiecki Szczyt Wielki, ściana wschodnia. Szlaki i Drogi, 24 June 2015. http://szlakiidrogi.pl/mieguszowiecki-szczyt-wielki-sciana-wschodnia-jedna-sciana-trzy-drogi/ [access: 25.10.2023].
Tatrzański Park Narodowy, 2022. Geoportal. 1 August 2022. https://tpn.pl/zwiedzaj/wirtualne-tatry [access: 25.10.2023].
Tatrzański Park Narodowy, 2023. Statystyka. 14 March 2023. https://tpn.pl/zwiedzaj/turystyka/statystyka [access: 25.10.2023].
Ustrnul Z., Walawender E., Czekierda D., Lapin M. & Mikulova K., 2015. Precipitation and snow cover. [in:] Dąbrowska K. & Guzik M. (eds.), Atlas of the Tatra Mountains: Abiotic Nature [sheet II.3, maps 1 and 5, scale 1: 250 000], Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane.
Walter F., Amann F., Kos A., Kenner R., Phillips M., de Preux A., Huss M., Tognacca C., Clinton J., Diehl T. & Bonanomi Y., 2020. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology, 351, 106933. https://doi.org/10.1016/j.geomorph.2019.106933.
Wieczorek G.F., Snyder J.B., Alger C.S. & Isaacson K.A., 1992. Rock falls in Yosemite Valley, California. Open-File Report, 92-387, U.S. Geological Survey, Reston, Virginia. https://doi.org/10.3133/ofr92387.
Wspinanie.pl, n.d. Tatry. https://wspinanie.pl/topo/polska/tatry [access: 25.10.2023].
Zasadni J., Kłapyta P., Kałuża P., Makos M., 2022. The Tatra Mountains: glacial landforms prior to the Last Glacial Maximum. [in:] Palacios D., Hughes Ph.D., García-Ruiz J.M. & Andrés N. (eds.), European Glacial Landscapes, Elsevier, 271–275. https://doi.org/10.1016/B978-0-12-823498-3.00059-5.
Żmudzka E., Nejedlik P. & Mikulova K., 2015. Temperature, thermal indices. [in:] Dąbrowska K. & Guzik M. (eds.), Atlas of the Tatra Mountains: Abiotic Nature [sheet II.2, map 1, scale 1: 250 000]. Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)