An inventory of opencast mining excavations recultivated in the form of water reservoirs as an example of activities increasing the retention potential of the natural environment: a case study from Poland
DOI:
https://doi.org/10.7494/geol.2023.49.4.401Keywords:
geodetic inventory, mining excavations, recultivation, retention, blue infrastructureAbstract
The article presents examples of the employment of various geodetic measuring tools used for a detailed inventory of lake basins and shorelines. The measurement and analysis covered three post-mining open pit excavations recultivated as water reservoirs: two in Krakow (Bagry Wielkie and Bagry Małe) and one in Piaseczno (Piaseczno Sulphur Mine). Attention was paid to the factors that reduce the accuracy of the inventory of some flooded post-mining excavations, which determine the degree of usefulness of the morphometric data set for later analyses. According to available estimates, only about one-third of all water reservoirs in Poland have detailed geodetic documentation in the form of bathymetric maps. This documentation usually does not include water reservoirs of anthropogenic origin formed after the flooding of post-mining excavations (mines: sand, gravel, clay, limestone, sulphur, aggregates, etc.). The authors suggest the introduction of a document known as a reservoir documentation card and the creation of a database covering all anthropogenic water reservoirs. Considering the water deficit in Poland, it may be necessary to develop a detailed database of water resources in the short term.
Downloads
References
Amante C.J. & Eakins B.W., 2016. Accuracy of interpolated bathymetry in digital elevation models. Journal of Coastal Research, 76, 123–133. https://doi.org/10.2112/SI76-011.
Awedyk M., Kaczor B. & Miedzińska I., 2019. Atlas polskich rzek i jezior. Wydawnictwo Dragon, Bielsko-Biała.
Bartoszek L., Gruca-Rokosz R., Pękala A. & Czarnota J., 2022. Heavy metal accumulation in sediments of small retention reservoirs – ecological risk and the impact of humic substances distribution. Resources, 11(12), 113. https://doi.org/10.3390/resources11120113.
Bezak N., Kovačević M., Johnen G., Lebar K., Zupanc V., Vidmar A. & Rusjan S., 2021. Exploring options for flood risk management with special focus on retention reservoirs. Sustainability, 13(18), 10099. https://doi.org/10.3390/su131810099.
Bouleau N., 2021. The Mathematics of Errors. Springer, Cham. https://doi.org/10.1007/978-3-030-88575-5.
Cała M., Schlendstedt J. & Ostręga A., 2019. Rekultywacja i rewitalizacja rejonów pogórniczych w Polsce i w Niemczech: uwarunkowania planistyczne, przyrodnicze i kulturowe: monografia [The reclamation and revitalisation of post-mining areas in Poland and Germany: planning, natural and cultural considerations: monograph]. Wydawnictwa AGH, Kraków.
Choiński A. & Ptak M., 2014. Najnowsze sondowania wybranych jezior Pojezierza Wielkopolsko-Kujawskiego. Badania Fizjograficzne nad Polską Zachodnią. Seria A: Geografia Fizyczna, 65, 55–63.
Czym jest retencja?, n.d. Gov.pl. https://www.gov.pl/web/retencja/czym-jest-retencja [access: 2.02.2022].
Eagle Electronics, 1992. Eagle Ultra II and Eagle Ultra II Plus Installation & Operating Instructions.
El-Hattab A.I., 2014. Single beam bathymetric data modelling techniques for accurate maintenance dredging. The Egyptian Journal of Remote Sensing and Space Science, 17(2), 189–195. https://doi.org/10.1016/j.ejrs.2014.05.003.
Ernstsen V.B., Noormets R., Hebbeln D., Bartholomä A., Flemming B.W., 2006. Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-Marine Letters, 26, 141–149. https://doi.org/10.1007/s00367-006-0025-3.
Ferreira I.O., Andrade L.C., Teixeira V.G. & Santos F.C.M., 2022. State of art of bathymetric surveys. Boletim de Ciências Geodésicas, 28(1), e2022002. https://doi.org/10.1590/s1982-21702022000100002.
Gammons C.H., Harris L.N., Castro, J.M., Cott P.A. & Hanna B.W., 2009. Creating lakes from open pit mines: Processes and considerations, emphasis on northern environments. Canadian Technical Report of Fisheries and Aquatic Sciences, 2826.
Gawałkiewicz R., 2018. Application of integration measurement technologies in inventory of Bagry water body. Geomatics and Environmental Engineering, 12(2), 33–50. https://doi.org/10.7494/geom.2018.12.2.33.
Gawałkiewicz R., 2021. Liquidated Sulphur Mine “Piaseczno” – Vol. 2. Application of integrated measurement technologies in the inventory of the “Piaseczno” water body – state of 2020. Geoinformatica Polonica, 20, 55–76. https://doi.org/10.4467/21995923GP.21.005.14976.
Gawałkiewicz R. & Madusiok D., 2018. The Bagry Reservoir – Part 3. The application of hydro-drone smart sonar-boat in bathymetric measurements of inaccessible water areas. Geoinformatica Polonica, 17, 17–30. https://doi.org/10.4467/21995923GP.18.002.9159.
Gołuch P., Dombek A. & Kapłon J., 2010. Ocena dokładności danych uzyskanych z pomiaru batymetrycznego wykonanego echosondą Lowrance LMS-527c DF iGPS. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 21, 109–118.
Jakubiak M. & Panek E., 2017. Małe zbiorniki wodne w zachodniej części Krakowa. Wydawnictwa AGH, Kraków.
Jawecki B., 2022. The influence of Strzelin Quarry Lakes on small reservoir retention resources in the regional catchments. Scientific Reports, 12, 14642. https://doi.org/10.1038/s41598-022-18777-6.
Kanownik W. & Rajda W., 2010. Quality indices of waters flowing away from catchments of small retention reservoirs planned in the Krakow region. Electronic Journal of Polish Agricultural Universities. Series Environmental Development, 13(3), 08. http://www.ejpau.media.pl/volume13/issue3/art-08.html.
Kaźmierczak U., Bartlewska-Urban M. & Strzałkowski P., 2022. Slope shape optimization of water reservoirs formed due to the reclamation of post-mining excavations. Applied Sciences, 12, 1690. https://doi.org/10.3390/app12031690.
Kõiv-Vainik M., Kill K., Espenberg M., Uuemaa E., Teemusk A., Maddison M., Palta M.M., Török L., Mander Ü., Scholz M. & Kasak K., 2022. Urban stormwater retention capacity of nature-based solutions at different climatic conditions. Nature-Based Solutions, 2, 100038. https://doi.org/10.1016/j.nbsj.2022.100038.
Królikowska J. & Królikowski A., 2019. Wody opadowe: odprowadzanie, zagospodarowanie, podczyszczanie i wykorzystanie. Wydawnictwo Seidel-Przywecki, Józefosław.
Kwiecień K., 1979. Polska siarka. Krajowa Agencja Wydawnicza, Kraków.
Laks I. & Walczak Z., 2019. Modelling of the Impact of the retention reservoir on the flood protection of the city – A case study for the City of Kalisz (Central Poland). IOP Conference Series: Materials Science and Engineering, 603(2), 022066. https://doi.org/10.1088/1757-899X/603/2/022066.
Laurenson G., Laurenson S., Bolan N., Beecham S. & Clark I., 2013. Chapter Four – The role of bioretention systems in the treatment of stormwater. [in] Sparks D.L. (ed.), Advances in Agronomy, 120, Academic Press, 223–274. https://doi.org/10.1016/B978-0-12-407686-0.00004-X.
Lowrance, 2011a. Lowrance Elite-4x User manual. Navico. https://www.manuals.ca/lowrance/elite-4x/manual.
Lowrance, 2011b. Lowrance Mark-4 User manual. Navico. https://www.manua.ls/lowrance/mark-4/manual.
Ministerstwo Infrastruktury, 2021. Retencja. Zatrzymaj wodę! Program przeciwdziałania niedoborowi wody. Warszawa. https://www.gov.pl/attachment/8530a475-f8dc-4ae0-af57-1ff5b7da7342.
Moran N., Stringer B., Lin B. & Hoque T., 2022. Machine learning model selection for predicting bathymetry. Deep Sea Research Part I: Oceanographic Research Papers, 185, 103788. https://doi.org/10.1016/j.dsr.2022.103788.
Ohmex Instrumentation, 2016. Sonarmite v5.xx BTX/SPX single beam. Portable bluetooth echo sounder. Lymtech. http://www.ohmex.com/BTXhardware.pdf.
Pawłowski S., 1956. Dokumentacja geologiczna złoża siarki w Piasecznie koło Koprzywnicy. Inw. 107, kat. 4633/181. Narodowe Archiwum Geologiczne, Warszawa.
Pochwat K.B. & Słyś D., 2018. Application of artificial neural networks in the dimensioning of retention reservoirs. Ecological Chemistry and Engineering S, 25(4), 605–617. https://doi.org/10.1515/eces-2018-0040.
Polski Komitet Normalizacyjny (PKN), 2022. Górnictwo odkrywkowe – Rekultywacja – Ogólne wytyczne projektowania (PN-G-07800:2002). Warszawa.
Popielarczyk D. & Templin T., 2014. Application of integrated GNSS/hydroacoustic measurements and GIS geodatabase models for bottom analysis of Lake Hancza: The deepest inland reservoir in Poland. Pure and Applied Geophysics, 171(6), 997–1011. https://doi.org/10.1007/s00024 013-0683-9.
Rossi L., Mammi I. & Pelliccia F., 2020. UAV-derived multispectral bathymetry. Remote Sensing, 12(23), 3897. https://doi.org/10.3390/rs12233897.
Rowley T., Ursic M., Konsoer K., Langendoen E., Mutschler M., Sampey J. & Pawel Pocwiardowski, 2020. Comparison of terrestrial LIDAR, SFM and MBES resolution and accuracy for geomorphic analyses in physical systems that experience subaerial and subaqueous conditions. Geomorphology, 355, 107056. https://doi.org/10.1016/j.geomorph.2020.107056.
Samad A.M., Kamarulzaman N., Hamdani M.A., Mastor T.A. & Hashim K.A., 2013. The potential of unmanned aerial vehicle (UAV) for civilian and mapping application. [in:] 2013 IEEE 3rd International Conference on System Engineering and Technology (ICSET 2013): Shah Alam, Malaysia 19 – 20 August 2013, IEEE, Piscataway, 313–318. https://doi.org/10.1109/ICSEngT.2013.6650191.
Schultze M., Vandenberg J., McCullough C.D. & Castendyk D., 2022. The future direction of pit lakes: Part 1, Research needs. Mine Water and the Environment, 41, 533–543. https://doi.org/10.1007/s10230-022-00850-1.
Sender J., Urban D., Różańska-Boczula M. & Grzywna A., 2021. Long-term changes in floristic diversity as an effect of transforming the lake into a retention reservoir. Sustainability, 13(14), 7642. https://doi.org/10.3390/su13147642.
Singh P.D., Klamerus-Iwan A. & Pietrzykowski M., 2022. Water retention potential in novel terrestrial ecosystems restored on post-mine sites: A review. Forests, 14(1), 18. https://doi.org/10.3390/f14010018.
Sokołowski J., Socha M., Felter A. & Stożek J., 2016. Studium możliwości występowania i wykorzystania wód leczniczych i termalnych w Tarnobrzegu wraz z określeniem uwarunkowań formalno-prawnych poszukiwania i eksploatacji wód oraz możliwości finansowania podziemnej części inwestycji (otworu wiertniczego). Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
Stachowski P., Kraczkowska K., Liberacki D. & Oliskiewicz Krzywicka A., 2018. Water reservoirs as an element of shaping water resources of post-mining areas. Journal of Ecological Engineering, 19(4), 217–225. https://doi.org/10.12911/22998993/89658.
Stammer D., Ray R.D., Andersen O.B., Arbic B.K., Bosch W., Carrère L., Cheng Y., Chinn D.S., Dushaw B.D., Egbert G.D., Erofeeva S.Y., Fok H.S., Green J.A.M., Griffiths S., King M.A., Lapin V., Lemoine F.G., Luthcke S.B., Lyard F., Morison J., …, Yi Y., 2014. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3), 243–282. https://doi.org/10.1002/2014RG000450.
Szmuc M. & Madej K., 2010. Likwidacja wyrobiska „Piaseczno” – budowa zbiornika wodnego. Górnictwo i Geologia, 5(2), 213–219.
Vandecasteele I., Rivero I., Baranzelli C., Becker W., Dreoni I., Lavalle C. & Batelaan O., 2018. The Water Retention Index: Using land use planning to manage water resources in Europe. Sustainable Development, 26(2), 122–131. https://doi.org/10.1002/sd.1723.
Wiatkowski M., Wiatkowska B., Gruss Ł., Rosik-Dulewska C., Tomczyk P. & Chłopek D., 2021. Assessment of the possibility of implementing small retention reservoirs in terms of the need to increase water resources. Archives of Environmental Protection, 47(1), 80–100. https://doi.org/10.24425/aep.2021.136451.
Wicher A., 2009. Mapa batymetryczna zalewu Kryspinów I. Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej, Wydział Geograficzno-Biologiczny, Instytut Geografii, Kraków [M.Sc. thesis].
Wurms S. & Westrich B., 2008. Targeted retention of contaminated sediment in a green flood retention reservoir. [in:] 4th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability: Toronto, Ontario, Canada, May 6–8, 2008, Institute for Catastrophic Loss Reduction, 140-1–140-8.
Zhang G., Wu Y., Li H., Zhao W., Wang F., Chen L., Sivakumar B., Liu S., Qiu L. & Wang W., 2022. Assessment of water retention variation and risk warning under climate change in an inner headwater basin in the 21st century, Journal of Hydrology, 615(B), 128717. https://doi.org/10.1016/j.jhydrol.2022.128717.
Zhang T., Xu X. & Xu S., 2015. Method of establishing an underwater digital elevation terrain based on kriging interpolation. Measurement, 63, 287–298. https://doi.org/10.1016/j.measurement.2014.12.025.
Zhou S., Yu B., Lintner B.R., Findell K.L. & Zhang Y., 2023. Projected increase in global runoff dominated by land surface changes. Nature Climate Change, 13, 442–449. https://doi.org/10.1038/s41558-023-01659-8.
Zongjian L., 2008. UAV for mapping – low altitude photogrammetric survey. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII-B1, 1183–1186. https://www.isprs.org/proceedings/XXXVII/congress/tc1.aspx.
Downloads
Published
Issue
Section
License
Authors have full copyright and property rights to their work. Their copyrights to store the work, duplicate it in printing (as well as in the form of a digital CD recording), to make it available in the digital form, on the Internet and putting into circulation multiplied copies of the work worldwide are unlimited.
The content of the journal is freely available according to the Creative Commons License Attribution 4.0 International (CC BY 4.0)